Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes

Photodiodes serve as pivotal components in optical data links, where minimized dark current and junction capacitance is vital for improving the detection sensitivity and response speed of the devices. This study experimentally and theoretically demonstrates that the one-side junction photodiode (OSJ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2024-11, Vol.36 (21), p.1297-1300
Hauptverfasser: He, Wei, Jiang, Zhongjun, Wang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1300
container_issue 21
container_start_page 1297
container_title IEEE photonics technology letters
container_volume 36
creator He, Wei
Jiang, Zhongjun
Wang, Liang
description Photodiodes serve as pivotal components in optical data links, where minimized dark current and junction capacitance is vital for improving the detection sensitivity and response speed of the devices. This study experimentally and theoretically demonstrates that the one-side junction photodiode (OSJ-PD) exhibits reduced dark current and diminished junction capacitance. Notably, the device has a capacitance density of 2.2 \times 10^{-4}\ \mathrm {pF} / \mu \mathrm {m}^{2} and a dark current density of 2.4 \times 10^{-5}\ \mathrm {nA} / \mu \mathrm {m}^{2} at −5 V bias. Numerical simulations of current-voltage characteristics reveal that Shockley-Read-Hall (SRH) and trap-assisted tunneling (TAT) currents dominate dark current at low reverse bias from 0 V to −14 V, while band-to-band tunneling (BBT) current prevails at higher reverse bias from −14 V to −20 V. This study, for the first time, explains the trend of the variation in the dark current curve with bias voltage based on the generation mechanisms of dark current. Furthermore, we have theoretically demonstrated that the dark current of the OSJ-PD is insensitive to defect density at low voltages, and attributed the low junction capacitance to the wide depletion layer nature of the OSJ-PDs. These findings provide a comprehensive understanding of carrier transport and give a demonstration to analyze the current variation within diverse photodiodes.
doi_str_mv 10.1109/LPT.2024.3464865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3112228981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684735</ieee_id><sourcerecordid>3112228981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-da92517d28d40cac80c442fb646b9527ad55b29b1f5a752d2968e3edc06372433</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7x9SOPEYVXUVErUVYsx3ZUF2oHOxn496QqEkz3DN85V_oQugQyAyDVzWK1nlFC-YzxnJe5OEITqDhkBAp-PGYyZgAmTtFZSltCgAvGJ-j9TsUPXA8xWt_jdVQ-dSH2WHmDnwevexc8rlWntOuV1xa_WL1R3qUddh7P_Qovvc1enbF_-GoT-mBcMDado5NWfSZ78Xun6O3hfl0_ZYvl47y-XWQaCtFnRlVUQGFoaTjRSpdEc07bJud5UwlaKCNEQ6sGWqEKQQ2t8tIyazTJWUE5Y1N0fdjtYvgabOrlNgzRjy8lA6CUllUJI0UOlI4hpWhb2UW3U_FbApF7i3K0KPcW5a_FsXJ1qDhr7T88L3nBBPsB3ShtSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228981</pqid></control><display><type>article</type><title>Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes</title><source>IEEE Electronic Library (IEL)</source><creator>He, Wei ; Jiang, Zhongjun ; Wang, Liang</creator><creatorcontrib>He, Wei ; Jiang, Zhongjun ; Wang, Liang</creatorcontrib><description><![CDATA[Photodiodes serve as pivotal components in optical data links, where minimized dark current and junction capacitance is vital for improving the detection sensitivity and response speed of the devices. This study experimentally and theoretically demonstrates that the one-side junction photodiode (OSJ-PD) exhibits reduced dark current and diminished junction capacitance. Notably, the device has a capacitance density of <inline-formula> <tex-math notation="LaTeX">2.2 \times 10^{-4}\ \mathrm {pF} / \mu \mathrm {m}^{2} </tex-math></inline-formula> and a dark current density of <inline-formula> <tex-math notation="LaTeX">2.4 \times 10^{-5}\ \mathrm {nA} / \mu \mathrm {m}^{2} </tex-math></inline-formula> at −5 V bias. Numerical simulations of current-voltage characteristics reveal that Shockley-Read-Hall (SRH) and trap-assisted tunneling (TAT) currents dominate dark current at low reverse bias from 0 V to −14 V, while band-to-band tunneling (BBT) current prevails at higher reverse bias from −14 V to −20 V. This study, for the first time, explains the trend of the variation in the dark current curve with bias voltage based on the generation mechanisms of dark current. Furthermore, we have theoretically demonstrated that the dark current of the OSJ-PD is insensitive to defect density at low voltages, and attributed the low junction capacitance to the wide depletion layer nature of the OSJ-PDs. These findings provide a comprehensive understanding of carrier transport and give a demonstration to analyze the current variation within diverse photodiodes.]]></description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2024.3464865</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Capacitance ; Carrier density ; Carrier transport ; Current carriers ; Current voltage characteristics ; Dark current ; Electric fields ; junction capacitance ; Junctions ; One-side junction photodiodes ; Photodiodes ; Radiative recombination ; transport mechanism ; Tunneling</subject><ispartof>IEEE photonics technology letters, 2024-11, Vol.36 (21), p.1297-1300</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-da92517d28d40cac80c442fb646b9527ad55b29b1f5a752d2968e3edc06372433</cites><orcidid>0009-0004-9037-3384 ; 0000-0003-2422-0916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Jiang, Zhongjun</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><title>Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description><![CDATA[Photodiodes serve as pivotal components in optical data links, where minimized dark current and junction capacitance is vital for improving the detection sensitivity and response speed of the devices. This study experimentally and theoretically demonstrates that the one-side junction photodiode (OSJ-PD) exhibits reduced dark current and diminished junction capacitance. Notably, the device has a capacitance density of <inline-formula> <tex-math notation="LaTeX">2.2 \times 10^{-4}\ \mathrm {pF} / \mu \mathrm {m}^{2} </tex-math></inline-formula> and a dark current density of <inline-formula> <tex-math notation="LaTeX">2.4 \times 10^{-5}\ \mathrm {nA} / \mu \mathrm {m}^{2} </tex-math></inline-formula> at −5 V bias. Numerical simulations of current-voltage characteristics reveal that Shockley-Read-Hall (SRH) and trap-assisted tunneling (TAT) currents dominate dark current at low reverse bias from 0 V to −14 V, while band-to-band tunneling (BBT) current prevails at higher reverse bias from −14 V to −20 V. This study, for the first time, explains the trend of the variation in the dark current curve with bias voltage based on the generation mechanisms of dark current. Furthermore, we have theoretically demonstrated that the dark current of the OSJ-PD is insensitive to defect density at low voltages, and attributed the low junction capacitance to the wide depletion layer nature of the OSJ-PDs. These findings provide a comprehensive understanding of carrier transport and give a demonstration to analyze the current variation within diverse photodiodes.]]></description><subject>Bias</subject><subject>Capacitance</subject><subject>Carrier density</subject><subject>Carrier transport</subject><subject>Current carriers</subject><subject>Current voltage characteristics</subject><subject>Dark current</subject><subject>Electric fields</subject><subject>junction capacitance</subject><subject>Junctions</subject><subject>One-side junction photodiodes</subject><subject>Photodiodes</subject><subject>Radiative recombination</subject><subject>transport mechanism</subject><subject>Tunneling</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7x9SOPEYVXUVErUVYsx3ZUF2oHOxn496QqEkz3DN85V_oQugQyAyDVzWK1nlFC-YzxnJe5OEITqDhkBAp-PGYyZgAmTtFZSltCgAvGJ-j9TsUPXA8xWt_jdVQ-dSH2WHmDnwevexc8rlWntOuV1xa_WL1R3qUddh7P_Qovvc1enbF_-GoT-mBcMDado5NWfSZ78Xun6O3hfl0_ZYvl47y-XWQaCtFnRlVUQGFoaTjRSpdEc07bJud5UwlaKCNEQ6sGWqEKQQ2t8tIyazTJWUE5Y1N0fdjtYvgabOrlNgzRjy8lA6CUllUJI0UOlI4hpWhb2UW3U_FbApF7i3K0KPcW5a_FsXJ1qDhr7T88L3nBBPsB3ShtSQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>He, Wei</creator><creator>Jiang, Zhongjun</creator><creator>Wang, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-9037-3384</orcidid><orcidid>https://orcid.org/0000-0003-2422-0916</orcidid></search><sort><creationdate>20241101</creationdate><title>Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes</title><author>He, Wei ; Jiang, Zhongjun ; Wang, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-da92517d28d40cac80c442fb646b9527ad55b29b1f5a752d2968e3edc06372433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Capacitance</topic><topic>Carrier density</topic><topic>Carrier transport</topic><topic>Current carriers</topic><topic>Current voltage characteristics</topic><topic>Dark current</topic><topic>Electric fields</topic><topic>junction capacitance</topic><topic>Junctions</topic><topic>One-side junction photodiodes</topic><topic>Photodiodes</topic><topic>Radiative recombination</topic><topic>transport mechanism</topic><topic>Tunneling</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Jiang, Zhongjun</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Wei</au><au>Jiang, Zhongjun</au><au>Wang, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>21</issue><spage>1297</spage><epage>1300</epage><pages>1297-1300</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract><![CDATA[Photodiodes serve as pivotal components in optical data links, where minimized dark current and junction capacitance is vital for improving the detection sensitivity and response speed of the devices. This study experimentally and theoretically demonstrates that the one-side junction photodiode (OSJ-PD) exhibits reduced dark current and diminished junction capacitance. Notably, the device has a capacitance density of <inline-formula> <tex-math notation="LaTeX">2.2 \times 10^{-4}\ \mathrm {pF} / \mu \mathrm {m}^{2} </tex-math></inline-formula> and a dark current density of <inline-formula> <tex-math notation="LaTeX">2.4 \times 10^{-5}\ \mathrm {nA} / \mu \mathrm {m}^{2} </tex-math></inline-formula> at −5 V bias. Numerical simulations of current-voltage characteristics reveal that Shockley-Read-Hall (SRH) and trap-assisted tunneling (TAT) currents dominate dark current at low reverse bias from 0 V to −14 V, while band-to-band tunneling (BBT) current prevails at higher reverse bias from −14 V to −20 V. This study, for the first time, explains the trend of the variation in the dark current curve with bias voltage based on the generation mechanisms of dark current. Furthermore, we have theoretically demonstrated that the dark current of the OSJ-PD is insensitive to defect density at low voltages, and attributed the low junction capacitance to the wide depletion layer nature of the OSJ-PDs. These findings provide a comprehensive understanding of carrier transport and give a demonstration to analyze the current variation within diverse photodiodes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2024.3464865</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0004-9037-3384</orcidid><orcidid>https://orcid.org/0000-0003-2422-0916</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2024-11, Vol.36 (21), p.1297-1300
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_journals_3112228981
source IEEE Electronic Library (IEL)
subjects Bias
Capacitance
Carrier density
Carrier transport
Current carriers
Current voltage characteristics
Dark current
Electric fields
junction capacitance
Junctions
One-side junction photodiodes
Photodiodes
Radiative recombination
transport mechanism
Tunneling
title Dark Current Transport and Junction Capacitance Mechanism in InP One-Side Junction Photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20Current%20Transport%20and%20Junction%20Capacitance%20Mechanism%20in%20InP%20One-Side%20Junction%20Photodiodes&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=He,%20Wei&rft.date=2024-11-01&rft.volume=36&rft.issue=21&rft.spage=1297&rft.epage=1300&rft.pages=1297-1300&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2024.3464865&rft_dat=%3Cproquest_RIE%3E3112228981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228981&rft_id=info:pmid/&rft_ieee_id=10684735&rfr_iscdi=true