CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment
This paper proposes a novel Convolutional Kolmogorov-Arnold Network (CKAN) model for Intrusion Detection Systems (IDS) in an IoT environment. The CKAN model is developed by replacing the Multi-Layer Perceptrons (MLPs) layers with Kolmogorov-Arnold Networks (KANs) layers inside the Convolutional Neur...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.134837-134851 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134851 |
---|---|
container_issue | |
container_start_page | 134837 |
container_title | IEEE access |
container_volume | 12 |
creator | Abd Elaziz, Mohamed Ahmed Fares, Ibrahim Aseeri, Ahmad O. |
description | This paper proposes a novel Convolutional Kolmogorov-Arnold Network (CKAN) model for Intrusion Detection Systems (IDS) in an IoT environment. The CKAN model is developed by replacing the Multi-Layer Perceptrons (MLPs) layers with Kolmogorov-Arnold Networks (KANs) layers inside the Convolutional Neural Networks (CNN) architecture. The KANs give high performance compared to the MLPs layers with fewer parameters. The performance of the proposed CKAN model has been evaluated against other well-known Deep Learning (DL) models like CNN, recurrent neural networks (RNN), and Autoencoder. The evaluation process has been carried out with three benchmark datasets: NSL_KDD, which is treated as a standard IDS dataset; CICIoT2023; TONIoT, which are IoT IDS datasets. The results point out the superiority of the CKAN model over other DL models for both binary and multi-classification tasks as per the accuracy, precision, recall, and F1 score. The proposed CKAN model achieved accuracies of 98.71%, 99.22%, and 99.93% for binary classification, and 99.2%, 98.84%, and 93.3% for multi-classification on the NSL_KDD, CICIoT2023, and TONIoT datasets, respectively. The CKAN model gives better performance metrics with a smaller number of parameters compared to other DL models. In this way, our findings point out that KANs are promising for being a substitute for MLPs. |
doi_str_mv | 10.1109/ACCESS.2024.3462297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112228979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681070</ieee_id><doaj_id>oai_doaj_org_article_d38326fa4b4141ca9945be35351b05f2</doaj_id><sourcerecordid>3112228979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-daa626d53bd774d90ba6e0336de557fbb6d44bf4928012967042a1bd11fac1c93</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgj4BXCIxLkjX00bblMZUDHgsHGOkiZFHV09knaIf09LEcIXW5af15bfKLogeEYIltfzPF-sVjOKKZ8xLiiV6UF0QomQMUuYOPxXH0fnIWzwENnQStKTSOWP8-cblEO7h6bvamh1gx6h2cIbeNjHc99CY9Gz6z7Bvwf0BNY1qAKPirbzfRgAdOs6V44oqltUwBot2n3tod26tjuLjirdBHf-m0-j17vFOn-Ily_3RT5fxiXNZBdbrQUVNmHGpim3EhstHGZMWJckaWWMsJybikuaYUKlSDGnmhhLSKVLUkp2GhWTrgW9UTtfb7X_UqBr9dMA_6a07-qyccqyjFFRaW444aTUUvLEuOE9CTE4qeigdTVp7Tx89C50agO9Hx4TFCOE0uHidNzIpqnSQwjeVX9bCVajMWoyRo3GqF9jBupyomrn3D9CZASnmH0D5NOJLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228979</pqid></control><display><type>article</type><title>CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Abd Elaziz, Mohamed ; Ahmed Fares, Ibrahim ; Aseeri, Ahmad O.</creator><creatorcontrib>Abd Elaziz, Mohamed ; Ahmed Fares, Ibrahim ; Aseeri, Ahmad O.</creatorcontrib><description>This paper proposes a novel Convolutional Kolmogorov-Arnold Network (CKAN) model for Intrusion Detection Systems (IDS) in an IoT environment. The CKAN model is developed by replacing the Multi-Layer Perceptrons (MLPs) layers with Kolmogorov-Arnold Networks (KANs) layers inside the Convolutional Neural Networks (CNN) architecture. The KANs give high performance compared to the MLPs layers with fewer parameters. The performance of the proposed CKAN model has been evaluated against other well-known Deep Learning (DL) models like CNN, recurrent neural networks (RNN), and Autoencoder. The evaluation process has been carried out with three benchmark datasets: NSL_KDD, which is treated as a standard IDS dataset; CICIoT2023; TONIoT, which are IoT IDS datasets. The results point out the superiority of the CKAN model over other DL models for both binary and multi-classification tasks as per the accuracy, precision, recall, and F1 score. The proposed CKAN model achieved accuracies of 98.71%, 99.22%, and 99.93% for binary classification, and 99.2%, 98.84%, and 93.3% for multi-classification on the NSL_KDD, CICIoT2023, and TONIoT datasets, respectively. The CKAN model gives better performance metrics with a smaller number of parameters compared to other DL models. In this way, our findings point out that KANs are promising for being a substitute for MLPs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3462297</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Computational modeling ; Computer architecture ; Convolutional neural networks ; Datasets ; Deep learning ; Intrusion detection ; Intrusion detection systems ; intrusion detection systems (IDS) ; IoT ; Kolmogorov-Arnold networks (KANs) ; Machine learning ; multi-layer perceptrons ; Multilayer perceptrons ; Multilayers ; Neural networks ; Parameters ; Performance evaluation ; Performance measurement ; Recurrent neural networks ; Splines (mathematics)</subject><ispartof>IEEE access, 2024, Vol.12, p.134837-134851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-daa626d53bd774d90ba6e0336de557fbb6d44bf4928012967042a1bd11fac1c93</cites><orcidid>0000-0002-4234-4069 ; 0000-0002-2732-7850 ; 0000-0002-7682-6269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681070$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Abd Elaziz, Mohamed</creatorcontrib><creatorcontrib>Ahmed Fares, Ibrahim</creatorcontrib><creatorcontrib>Aseeri, Ahmad O.</creatorcontrib><title>CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a novel Convolutional Kolmogorov-Arnold Network (CKAN) model for Intrusion Detection Systems (IDS) in an IoT environment. The CKAN model is developed by replacing the Multi-Layer Perceptrons (MLPs) layers with Kolmogorov-Arnold Networks (KANs) layers inside the Convolutional Neural Networks (CNN) architecture. The KANs give high performance compared to the MLPs layers with fewer parameters. The performance of the proposed CKAN model has been evaluated against other well-known Deep Learning (DL) models like CNN, recurrent neural networks (RNN), and Autoencoder. The evaluation process has been carried out with three benchmark datasets: NSL_KDD, which is treated as a standard IDS dataset; CICIoT2023; TONIoT, which are IoT IDS datasets. The results point out the superiority of the CKAN model over other DL models for both binary and multi-classification tasks as per the accuracy, precision, recall, and F1 score. The proposed CKAN model achieved accuracies of 98.71%, 99.22%, and 99.93% for binary classification, and 99.2%, 98.84%, and 93.3% for multi-classification on the NSL_KDD, CICIoT2023, and TONIoT datasets, respectively. The CKAN model gives better performance metrics with a smaller number of parameters compared to other DL models. In this way, our findings point out that KANs are promising for being a substitute for MLPs.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>intrusion detection systems (IDS)</subject><subject>IoT</subject><subject>Kolmogorov-Arnold networks (KANs)</subject><subject>Machine learning</subject><subject>multi-layer perceptrons</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Recurrent neural networks</subject><subject>Splines (mathematics)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgj4BXCIxLkjX00bblMZUDHgsHGOkiZFHV09knaIf09LEcIXW5af15bfKLogeEYIltfzPF-sVjOKKZ8xLiiV6UF0QomQMUuYOPxXH0fnIWzwENnQStKTSOWP8-cblEO7h6bvamh1gx6h2cIbeNjHc99CY9Gz6z7Bvwf0BNY1qAKPirbzfRgAdOs6V44oqltUwBot2n3tod26tjuLjirdBHf-m0-j17vFOn-Ily_3RT5fxiXNZBdbrQUVNmHGpim3EhstHGZMWJckaWWMsJybikuaYUKlSDGnmhhLSKVLUkp2GhWTrgW9UTtfb7X_UqBr9dMA_6a07-qyccqyjFFRaW444aTUUvLEuOE9CTE4qeigdTVp7Tx89C50agO9Hx4TFCOE0uHidNzIpqnSQwjeVX9bCVajMWoyRo3GqF9jBupyomrn3D9CZASnmH0D5NOJLw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Abd Elaziz, Mohamed</creator><creator>Ahmed Fares, Ibrahim</creator><creator>Aseeri, Ahmad O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4234-4069</orcidid><orcidid>https://orcid.org/0000-0002-2732-7850</orcidid><orcidid>https://orcid.org/0000-0002-7682-6269</orcidid></search><sort><creationdate>2024</creationdate><title>CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment</title><author>Abd Elaziz, Mohamed ; Ahmed Fares, Ibrahim ; Aseeri, Ahmad O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-daa626d53bd774d90ba6e0336de557fbb6d44bf4928012967042a1bd11fac1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>intrusion detection systems (IDS)</topic><topic>IoT</topic><topic>Kolmogorov-Arnold networks (KANs)</topic><topic>Machine learning</topic><topic>multi-layer perceptrons</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Recurrent neural networks</topic><topic>Splines (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abd Elaziz, Mohamed</creatorcontrib><creatorcontrib>Ahmed Fares, Ibrahim</creatorcontrib><creatorcontrib>Aseeri, Ahmad O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd Elaziz, Mohamed</au><au>Ahmed Fares, Ibrahim</au><au>Aseeri, Ahmad O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>134837</spage><epage>134851</epage><pages>134837-134851</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a novel Convolutional Kolmogorov-Arnold Network (CKAN) model for Intrusion Detection Systems (IDS) in an IoT environment. The CKAN model is developed by replacing the Multi-Layer Perceptrons (MLPs) layers with Kolmogorov-Arnold Networks (KANs) layers inside the Convolutional Neural Networks (CNN) architecture. The KANs give high performance compared to the MLPs layers with fewer parameters. The performance of the proposed CKAN model has been evaluated against other well-known Deep Learning (DL) models like CNN, recurrent neural networks (RNN), and Autoencoder. The evaluation process has been carried out with three benchmark datasets: NSL_KDD, which is treated as a standard IDS dataset; CICIoT2023; TONIoT, which are IoT IDS datasets. The results point out the superiority of the CKAN model over other DL models for both binary and multi-classification tasks as per the accuracy, precision, recall, and F1 score. The proposed CKAN model achieved accuracies of 98.71%, 99.22%, and 99.93% for binary classification, and 99.2%, 98.84%, and 93.3% for multi-classification on the NSL_KDD, CICIoT2023, and TONIoT datasets, respectively. The CKAN model gives better performance metrics with a smaller number of parameters compared to other DL models. In this way, our findings point out that KANs are promising for being a substitute for MLPs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3462297</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4234-4069</orcidid><orcidid>https://orcid.org/0000-0002-2732-7850</orcidid><orcidid>https://orcid.org/0000-0002-7682-6269</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.134837-134851 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3112228979 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Artificial neural networks Classification Computational modeling Computer architecture Convolutional neural networks Datasets Deep learning Intrusion detection Intrusion detection systems intrusion detection systems (IDS) IoT Kolmogorov-Arnold networks (KANs) Machine learning multi-layer perceptrons Multilayer perceptrons Multilayers Neural networks Parameters Performance evaluation Performance measurement Recurrent neural networks Splines (mathematics) |
title | CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CKAN:%20Convolutional%20Kolmogorov-Arnold%20Networks%20Model%20for%20Intrusion%20Detection%20in%20IoT%20Environment&rft.jtitle=IEEE%20access&rft.au=Abd%20Elaziz,%20Mohamed&rft.date=2024&rft.volume=12&rft.spage=134837&rft.epage=134851&rft.pages=134837-134851&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3462297&rft_dat=%3Cproquest_cross%3E3112228979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228979&rft_id=info:pmid/&rft_ieee_id=10681070&rft_doaj_id=oai_doaj_org_article_d38326fa4b4141ca9945be35351b05f2&rfr_iscdi=true |