Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy

Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (19), p.29634-29642
Hauptverfasser: Alcala, Enrique, Olmo, Alberto, Perez, Pablo, Fernandez, Santiago, Encabo, Laura, Risco, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29642
container_issue 19
container_start_page 29634
container_title IEEE sensors journal
container_volume 24
creator Alcala, Enrique
Olmo, Alberto
Perez, Pablo
Fernandez, Santiago
Encabo, Laura
Risco, Ramon
description Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.
doi_str_mv 10.1109/JSEN.2024.3443620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112228978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643012</ieee_id><sourcerecordid>3112228978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLckX9t2iOaBgwNOIwhblHquihT13RJe9i3p2U7cLJlv2c__Qi5ZXTGGM0fXteL9xmnXM6ElCLl9IxMWJJkMVMyOx97QWMp1PcluQphSynLVaIm5G3ums67urbNT7TY97a2hbf9LvqynbeVBdNZ10Sb8LevEYYpmDpa7losTQMYrdtx6AK49nBNLipTB7w51SnZPC0-5y_x6uN5OX9cxcBZ3sUqoyCFkMIM0UsGiIKmOasKXkppMIESioLnSFMFGXKokhQKnkHO0WDKjZiS--Pd1rt9j6HTW9f7ZnipBWOc8yxX2aBiRxUM8YLHSrfe7ow_aEb1SE2P1PRITZ-oDZ67o8ci4j99KgVlXPwCngNqPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228978</pqid></control><display><type>article</type><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><source>IEEE Xplore</source><creator>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</creator><creatorcontrib>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</creatorcontrib><description>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3443620</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Cryopreservation ; cryoprotectant concentration ; Cryoprotectants ; Dimethyl sulfoxide ; Electrical impedance ; electrical impedance spectroscopy (EIS) ; Electrical resistivity ; Electrodes ; Ethylene glycol ; Frequency response ; Ice ; Impedance ; Impedance spectroscopy ; Liquidus ; Monitoring ; perfusion control ; Phase shift ; Real time ; real-time monitoring ; Spectrum analysis ; Temperature measurement ; Temperature sensors ; Tracking devices ; Vitrification</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29634-29642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</cites><orcidid>0000-0001-6388-4462 ; 0000-0001-9250-8431 ; 0000-0001-7283-7254 ; 0000-0001-5995-6590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643012$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Alcala, Enrique</creatorcontrib><creatorcontrib>Olmo, Alberto</creatorcontrib><creatorcontrib>Perez, Pablo</creatorcontrib><creatorcontrib>Fernandez, Santiago</creatorcontrib><creatorcontrib>Encabo, Laura</creatorcontrib><creatorcontrib>Risco, Ramon</creatorcontrib><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</description><subject>Automatic control</subject><subject>Cryopreservation</subject><subject>cryoprotectant concentration</subject><subject>Cryoprotectants</subject><subject>Dimethyl sulfoxide</subject><subject>Electrical impedance</subject><subject>electrical impedance spectroscopy (EIS)</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Ethylene glycol</subject><subject>Frequency response</subject><subject>Ice</subject><subject>Impedance</subject><subject>Impedance spectroscopy</subject><subject>Liquidus</subject><subject>Monitoring</subject><subject>perfusion control</subject><subject>Phase shift</subject><subject>Real time</subject><subject>real-time monitoring</subject><subject>Spectrum analysis</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Tracking devices</subject><subject>Vitrification</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLckX9t2iOaBgwNOIwhblHquihT13RJe9i3p2U7cLJlv2c__Qi5ZXTGGM0fXteL9xmnXM6ElCLl9IxMWJJkMVMyOx97QWMp1PcluQphSynLVaIm5G3ums67urbNT7TY97a2hbf9LvqynbeVBdNZ10Sb8LevEYYpmDpa7losTQMYrdtx6AK49nBNLipTB7w51SnZPC0-5y_x6uN5OX9cxcBZ3sUqoyCFkMIM0UsGiIKmOasKXkppMIESioLnSFMFGXKokhQKnkHO0WDKjZiS--Pd1rt9j6HTW9f7ZnipBWOc8yxX2aBiRxUM8YLHSrfe7ow_aEb1SE2P1PRITZ-oDZ67o8ci4j99KgVlXPwCngNqPg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Alcala, Enrique</creator><creator>Olmo, Alberto</creator><creator>Perez, Pablo</creator><creator>Fernandez, Santiago</creator><creator>Encabo, Laura</creator><creator>Risco, Ramon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6388-4462</orcidid><orcidid>https://orcid.org/0000-0001-9250-8431</orcidid><orcidid>https://orcid.org/0000-0001-7283-7254</orcidid><orcidid>https://orcid.org/0000-0001-5995-6590</orcidid></search><sort><creationdate>20241001</creationdate><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><author>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic control</topic><topic>Cryopreservation</topic><topic>cryoprotectant concentration</topic><topic>Cryoprotectants</topic><topic>Dimethyl sulfoxide</topic><topic>Electrical impedance</topic><topic>electrical impedance spectroscopy (EIS)</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Ethylene glycol</topic><topic>Frequency response</topic><topic>Ice</topic><topic>Impedance</topic><topic>Impedance spectroscopy</topic><topic>Liquidus</topic><topic>Monitoring</topic><topic>perfusion control</topic><topic>Phase shift</topic><topic>Real time</topic><topic>real-time monitoring</topic><topic>Spectrum analysis</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Tracking devices</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcala, Enrique</creatorcontrib><creatorcontrib>Olmo, Alberto</creatorcontrib><creatorcontrib>Perez, Pablo</creatorcontrib><creatorcontrib>Fernandez, Santiago</creatorcontrib><creatorcontrib>Encabo, Laura</creatorcontrib><creatorcontrib>Risco, Ramon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcala, Enrique</au><au>Olmo, Alberto</au><au>Perez, Pablo</au><au>Fernandez, Santiago</au><au>Encabo, Laura</au><au>Risco, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29634</spage><epage>29642</epage><pages>29634-29642</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3443620</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6388-4462</orcidid><orcidid>https://orcid.org/0000-0001-9250-8431</orcidid><orcidid>https://orcid.org/0000-0001-7283-7254</orcidid><orcidid>https://orcid.org/0000-0001-5995-6590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (19), p.29634-29642
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3112228978
source IEEE Xplore
subjects Automatic control
Cryopreservation
cryoprotectant concentration
Cryoprotectants
Dimethyl sulfoxide
Electrical impedance
electrical impedance spectroscopy (EIS)
Electrical resistivity
Electrodes
Ethylene glycol
Frequency response
Ice
Impedance
Impedance spectroscopy
Liquidus
Monitoring
perfusion control
Phase shift
Real time
real-time monitoring
Spectrum analysis
Temperature measurement
Temperature sensors
Tracking devices
Vitrification
title Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Equilibrium%20Vitrification%20Using%20Electrical%20Impedance%20Spectroscopy&rft.jtitle=IEEE%20sensors%20journal&rft.au=Alcala,%20Enrique&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29634&rft.epage=29642&rft.pages=29634-29642&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3443620&rft_dat=%3Cproquest_cross%3E3112228978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228978&rft_id=info:pmid/&rft_ieee_id=10643012&rfr_iscdi=true