Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy
Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementatio...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, Vol.24 (19), p.29634-29642 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29642 |
---|---|
container_issue | 19 |
container_start_page | 29634 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Alcala, Enrique Olmo, Alberto Perez, Pablo Fernandez, Santiago Encabo, Laura Risco, Ramon |
description | Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques. |
doi_str_mv | 10.1109/JSEN.2024.3443620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112228978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643012</ieee_id><sourcerecordid>3112228978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLckX9t2iOaBgwNOIwhblHquihT13RJe9i3p2U7cLJlv2c__Qi5ZXTGGM0fXteL9xmnXM6ElCLl9IxMWJJkMVMyOx97QWMp1PcluQphSynLVaIm5G3ums67urbNT7TY97a2hbf9LvqynbeVBdNZ10Sb8LevEYYpmDpa7losTQMYrdtx6AK49nBNLipTB7w51SnZPC0-5y_x6uN5OX9cxcBZ3sUqoyCFkMIM0UsGiIKmOasKXkppMIESioLnSFMFGXKokhQKnkHO0WDKjZiS--Pd1rt9j6HTW9f7ZnipBWOc8yxX2aBiRxUM8YLHSrfe7ow_aEb1SE2P1PRITZ-oDZ67o8ci4j99KgVlXPwCngNqPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228978</pqid></control><display><type>article</type><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><source>IEEE Xplore</source><creator>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</creator><creatorcontrib>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</creatorcontrib><description>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3443620</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Cryopreservation ; cryoprotectant concentration ; Cryoprotectants ; Dimethyl sulfoxide ; Electrical impedance ; electrical impedance spectroscopy (EIS) ; Electrical resistivity ; Electrodes ; Ethylene glycol ; Frequency response ; Ice ; Impedance ; Impedance spectroscopy ; Liquidus ; Monitoring ; perfusion control ; Phase shift ; Real time ; real-time monitoring ; Spectrum analysis ; Temperature measurement ; Temperature sensors ; Tracking devices ; Vitrification</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29634-29642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</cites><orcidid>0000-0001-6388-4462 ; 0000-0001-9250-8431 ; 0000-0001-7283-7254 ; 0000-0001-5995-6590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643012$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Alcala, Enrique</creatorcontrib><creatorcontrib>Olmo, Alberto</creatorcontrib><creatorcontrib>Perez, Pablo</creatorcontrib><creatorcontrib>Fernandez, Santiago</creatorcontrib><creatorcontrib>Encabo, Laura</creatorcontrib><creatorcontrib>Risco, Ramon</creatorcontrib><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</description><subject>Automatic control</subject><subject>Cryopreservation</subject><subject>cryoprotectant concentration</subject><subject>Cryoprotectants</subject><subject>Dimethyl sulfoxide</subject><subject>Electrical impedance</subject><subject>electrical impedance spectroscopy (EIS)</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Ethylene glycol</subject><subject>Frequency response</subject><subject>Ice</subject><subject>Impedance</subject><subject>Impedance spectroscopy</subject><subject>Liquidus</subject><subject>Monitoring</subject><subject>perfusion control</subject><subject>Phase shift</subject><subject>Real time</subject><subject>real-time monitoring</subject><subject>Spectrum analysis</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Tracking devices</subject><subject>Vitrification</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE9PwzAMxSMEEmPwAZA4VOLckX9t2iOaBgwNOIwhblHquihT13RJe9i3p2U7cLJlv2c__Qi5ZXTGGM0fXteL9xmnXM6ElCLl9IxMWJJkMVMyOx97QWMp1PcluQphSynLVaIm5G3ums67urbNT7TY97a2hbf9LvqynbeVBdNZ10Sb8LevEYYpmDpa7losTQMYrdtx6AK49nBNLipTB7w51SnZPC0-5y_x6uN5OX9cxcBZ3sUqoyCFkMIM0UsGiIKmOasKXkppMIESioLnSFMFGXKokhQKnkHO0WDKjZiS--Pd1rt9j6HTW9f7ZnipBWOc8yxX2aBiRxUM8YLHSrfe7ow_aEb1SE2P1PRITZ-oDZ67o8ci4j99KgVlXPwCngNqPg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Alcala, Enrique</creator><creator>Olmo, Alberto</creator><creator>Perez, Pablo</creator><creator>Fernandez, Santiago</creator><creator>Encabo, Laura</creator><creator>Risco, Ramon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6388-4462</orcidid><orcidid>https://orcid.org/0000-0001-9250-8431</orcidid><orcidid>https://orcid.org/0000-0001-7283-7254</orcidid><orcidid>https://orcid.org/0000-0001-5995-6590</orcidid></search><sort><creationdate>20241001</creationdate><title>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</title><author>Alcala, Enrique ; Olmo, Alberto ; Perez, Pablo ; Fernandez, Santiago ; Encabo, Laura ; Risco, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-780c43343a109d1cee30691fb2d44ae5cdcbb29e067c8e2cf56cb28c92eae62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic control</topic><topic>Cryopreservation</topic><topic>cryoprotectant concentration</topic><topic>Cryoprotectants</topic><topic>Dimethyl sulfoxide</topic><topic>Electrical impedance</topic><topic>electrical impedance spectroscopy (EIS)</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Ethylene glycol</topic><topic>Frequency response</topic><topic>Ice</topic><topic>Impedance</topic><topic>Impedance spectroscopy</topic><topic>Liquidus</topic><topic>Monitoring</topic><topic>perfusion control</topic><topic>Phase shift</topic><topic>Real time</topic><topic>real-time monitoring</topic><topic>Spectrum analysis</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Tracking devices</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcala, Enrique</creatorcontrib><creatorcontrib>Olmo, Alberto</creatorcontrib><creatorcontrib>Perez, Pablo</creatorcontrib><creatorcontrib>Fernandez, Santiago</creatorcontrib><creatorcontrib>Encabo, Laura</creatorcontrib><creatorcontrib>Risco, Ramon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcala, Enrique</au><au>Olmo, Alberto</au><au>Perez, Pablo</au><au>Fernandez, Santiago</au><au>Encabo, Laura</au><au>Risco, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29634</spage><epage>29642</epage><pages>29634-29642</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Currently, there is an important need for efficient, affordable, and real-time cryoprotectant monitoring methods in biobanking and organ preservation applications. The precise sensing and control of temperature and cryoprotectant concentration is of utmost importance for the successful implementation of cryopreservation protocols and the design of automated devices for this purpose, especially in liquidus tracking (LT). Electrical impedance spectroscopy (EIS) is proposed and studied here as a noninvasive and affordable method for the real-time monitoring of cryoprotectant concentration. In this work, EIS has been used to provide a complete characterization of the most frequently used cryoprotectants (dimethyl sulfoxide and ethylene glycol), at different concentrations in phosphate buffer saline (from 0% to 90% v/v) and different temperatures (from -40 °C, -17 °C, and -10 °C to 20 °C). Our results show that EIS can successfully control cryoprotectant perfusion by measuring impedance magnitude. An increase in impedance magnitude and a leftward phase shift in the frequency response are observed when cryoprotectant concentration is increased. A decrease on the conductivity of the bulk solution is obtained when temperatures are lowered. These results provide a direct relationship between the cryoprotectant concentration and electrical impedance, thus closing the control loop in perfusion control. Measuring impedance magnitude at near-zero phase angle, corrected against temperature, can verify the proper addition of cryoprotectants in the state-of-the-art cryoprotection techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3443620</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6388-4462</orcidid><orcidid>https://orcid.org/0000-0001-9250-8431</orcidid><orcidid>https://orcid.org/0000-0001-7283-7254</orcidid><orcidid>https://orcid.org/0000-0001-5995-6590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (19), p.29634-29642 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3112228978 |
source | IEEE Xplore |
subjects | Automatic control Cryopreservation cryoprotectant concentration Cryoprotectants Dimethyl sulfoxide Electrical impedance electrical impedance spectroscopy (EIS) Electrical resistivity Electrodes Ethylene glycol Frequency response Ice Impedance Impedance spectroscopy Liquidus Monitoring perfusion control Phase shift Real time real-time monitoring Spectrum analysis Temperature measurement Temperature sensors Tracking devices Vitrification |
title | Controlling Equilibrium Vitrification Using Electrical Impedance Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Equilibrium%20Vitrification%20Using%20Electrical%20Impedance%20Spectroscopy&rft.jtitle=IEEE%20sensors%20journal&rft.au=Alcala,%20Enrique&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29634&rft.epage=29642&rft.pages=29634-29642&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3443620&rft_dat=%3Cproquest_cross%3E3112228978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228978&rft_id=info:pmid/&rft_ieee_id=10643012&rfr_iscdi=true |