Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface

Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (19), p.29806-29813
Hauptverfasser: Aprilia, Lia, Nuryadi, Ratno, Gandaryus Saputro, Adhitya, Arman Wella, Sasfan, Md Isa, Illyas, Abu Bakar, Suriani, Neo, Yoichiro, Mimura, Hidenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29813
container_issue 19
container_start_page 29806
container_title IEEE sensors journal
container_volume 24
creator Aprilia, Lia
Nuryadi, Ratno
Gandaryus Saputro, Adhitya
Arman Wella, Sasfan
Md Isa, Illyas
Abu Bakar, Suriani
Neo, Yoichiro
Mimura, Hidenori
description Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.
doi_str_mv 10.1109/JSEN.2024.3445368
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3112228813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648631</ieee_id><sourcerecordid>3112228813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-f97d0ecb92f32f70375f808852b537d6bfef23da1d0ca9149b0b7beebd4956123</originalsourceid><addsrcrecordid>eNotj19LwzAUxYMoOKcfQPAh4HNn_jbpo3Sbm8xNmAPxpaTpjWRszUy7wfz0VufTORx-514OQreUDCgl2cPzcjQfMMLEgAshearPUI9KqROqhD7_9Zwkgqv3S3TVNGtCaKak6iE33e5iOECF84nAQ2jBtj7UeNX6jf_29Sd-bZMh2BBN20Ef9QLPTR1iqJokD39ZRxs8PNZm6y1-8TYGa-quDgeIeLmPzli4RhfObBq4-dc-Wo1Hb_kkmS2epvnjLPGUizZxmaoI2DJjjjOnCFfSaaK1ZKXkqkpLB47xytCKWJNRkZWkVCVAWYlMppTxPro_3e1Gfe2haYt12Me6e1lwShljWlPeUXcnygNAsYt-a-KxoCQVOuWU_wCAMWIu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228813</pqid></control><display><type>article</type><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</creator><creatorcontrib>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</creatorcontrib><description>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3445368</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Adsorption energy ; Carbon monoxide ; Decoration ; Density functional theory ; density functional theory (DFT) calculation ; Environmental monitoring ; Frequency shift ; II-VI semiconductor materials ; Industrial safety ; Low concentrations ; Methane ; methane detection ; microcantilever ; Nanorods ; Pt-decorated ZnO nanorods (PZNRs) ; resonance frequency ; Room temperature ; Sensitivity ; Sensitivity analysis ; Sensors ; Temperature measurement ; Temperature sensors ; Zinc oxide</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29806-29813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0288-7333 ; 0000-0002-7621-2929 ; 0000-0002-5884-4287 ; 0000-0003-1988-8292 ; 0000-0003-4625-4420 ; 0000-0002-7541-9602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aprilia, Lia</creatorcontrib><creatorcontrib>Nuryadi, Ratno</creatorcontrib><creatorcontrib>Gandaryus Saputro, Adhitya</creatorcontrib><creatorcontrib>Arman Wella, Sasfan</creatorcontrib><creatorcontrib>Md Isa, Illyas</creatorcontrib><creatorcontrib>Abu Bakar, Suriani</creatorcontrib><creatorcontrib>Neo, Yoichiro</creatorcontrib><creatorcontrib>Mimura, Hidenori</creatorcontrib><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</description><subject>Adsorption</subject><subject>Adsorption energy</subject><subject>Carbon monoxide</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>density functional theory (DFT) calculation</subject><subject>Environmental monitoring</subject><subject>Frequency shift</subject><subject>II-VI semiconductor materials</subject><subject>Industrial safety</subject><subject>Low concentrations</subject><subject>Methane</subject><subject>methane detection</subject><subject>microcantilever</subject><subject>Nanorods</subject><subject>Pt-decorated ZnO nanorods (PZNRs)</subject><subject>resonance frequency</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Zinc oxide</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj19LwzAUxYMoOKcfQPAh4HNn_jbpo3Sbm8xNmAPxpaTpjWRszUy7wfz0VufTORx-514OQreUDCgl2cPzcjQfMMLEgAshearPUI9KqROqhD7_9Zwkgqv3S3TVNGtCaKak6iE33e5iOECF84nAQ2jBtj7UeNX6jf_29Sd-bZMh2BBN20Ef9QLPTR1iqJokD39ZRxs8PNZm6y1-8TYGa-quDgeIeLmPzli4RhfObBq4-dc-Wo1Hb_kkmS2epvnjLPGUizZxmaoI2DJjjjOnCFfSaaK1ZKXkqkpLB47xytCKWJNRkZWkVCVAWYlMppTxPro_3e1Gfe2haYt12Me6e1lwShljWlPeUXcnygNAsYt-a-KxoCQVOuWU_wCAMWIu</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Aprilia, Lia</creator><creator>Nuryadi, Ratno</creator><creator>Gandaryus Saputro, Adhitya</creator><creator>Arman Wella, Sasfan</creator><creator>Md Isa, Illyas</creator><creator>Abu Bakar, Suriani</creator><creator>Neo, Yoichiro</creator><creator>Mimura, Hidenori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0288-7333</orcidid><orcidid>https://orcid.org/0000-0002-7621-2929</orcidid><orcidid>https://orcid.org/0000-0002-5884-4287</orcidid><orcidid>https://orcid.org/0000-0003-1988-8292</orcidid><orcidid>https://orcid.org/0000-0003-4625-4420</orcidid><orcidid>https://orcid.org/0000-0002-7541-9602</orcidid></search><sort><creationdate>20241001</creationdate><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><author>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-f97d0ecb92f32f70375f808852b537d6bfef23da1d0ca9149b0b7beebd4956123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Adsorption energy</topic><topic>Carbon monoxide</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>density functional theory (DFT) calculation</topic><topic>Environmental monitoring</topic><topic>Frequency shift</topic><topic>II-VI semiconductor materials</topic><topic>Industrial safety</topic><topic>Low concentrations</topic><topic>Methane</topic><topic>methane detection</topic><topic>microcantilever</topic><topic>Nanorods</topic><topic>Pt-decorated ZnO nanorods (PZNRs)</topic><topic>resonance frequency</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprilia, Lia</creatorcontrib><creatorcontrib>Nuryadi, Ratno</creatorcontrib><creatorcontrib>Gandaryus Saputro, Adhitya</creatorcontrib><creatorcontrib>Arman Wella, Sasfan</creatorcontrib><creatorcontrib>Md Isa, Illyas</creatorcontrib><creatorcontrib>Abu Bakar, Suriani</creatorcontrib><creatorcontrib>Neo, Yoichiro</creatorcontrib><creatorcontrib>Mimura, Hidenori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aprilia, Lia</au><au>Nuryadi, Ratno</au><au>Gandaryus Saputro, Adhitya</au><au>Arman Wella, Sasfan</au><au>Md Isa, Illyas</au><au>Abu Bakar, Suriani</au><au>Neo, Yoichiro</au><au>Mimura, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29806</spage><epage>29813</epage><pages>29806-29813</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3445368</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0288-7333</orcidid><orcidid>https://orcid.org/0000-0002-7621-2929</orcidid><orcidid>https://orcid.org/0000-0002-5884-4287</orcidid><orcidid>https://orcid.org/0000-0003-1988-8292</orcidid><orcidid>https://orcid.org/0000-0003-4625-4420</orcidid><orcidid>https://orcid.org/0000-0002-7541-9602</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (19), p.29806-29813
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3112228813
source IEEE Electronic Library (IEL)
subjects Adsorption
Adsorption energy
Carbon monoxide
Decoration
Density functional theory
density functional theory (DFT) calculation
Environmental monitoring
Frequency shift
II-VI semiconductor materials
Industrial safety
Low concentrations
Methane
methane detection
microcantilever
Nanorods
Pt-decorated ZnO nanorods (PZNRs)
resonance frequency
Room temperature
Sensitivity
Sensitivity analysis
Sensors
Temperature measurement
Temperature sensors
Zinc oxide
title Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20CH4%20Detection%20Utilizing%20Pt-Decorated%20ZnO%20Nanorods-Coated%20on%20a%20Dynamic%20Microcantilever%20Surface&rft.jtitle=IEEE%20sensors%20journal&rft.au=Aprilia,%20Lia&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29806&rft.epage=29813&rft.pages=29806-29813&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3445368&rft_dat=%3Cproquest_RIE%3E3112228813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228813&rft_id=info:pmid/&rft_ieee_id=10648631&rfr_iscdi=true