Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface
Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which a...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, Vol.24 (19), p.29806-29813 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29813 |
---|---|
container_issue | 19 |
container_start_page | 29806 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Aprilia, Lia Nuryadi, Ratno Gandaryus Saputro, Adhitya Arman Wella, Sasfan Md Isa, Illyas Abu Bakar, Suriani Neo, Yoichiro Mimura, Hidenori |
description | Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors. |
doi_str_mv | 10.1109/JSEN.2024.3445368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3112228813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648631</ieee_id><sourcerecordid>3112228813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-f97d0ecb92f32f70375f808852b537d6bfef23da1d0ca9149b0b7beebd4956123</originalsourceid><addsrcrecordid>eNotj19LwzAUxYMoOKcfQPAh4HNn_jbpo3Sbm8xNmAPxpaTpjWRszUy7wfz0VufTORx-514OQreUDCgl2cPzcjQfMMLEgAshearPUI9KqROqhD7_9Zwkgqv3S3TVNGtCaKak6iE33e5iOECF84nAQ2jBtj7UeNX6jf_29Sd-bZMh2BBN20Ef9QLPTR1iqJokD39ZRxs8PNZm6y1-8TYGa-quDgeIeLmPzli4RhfObBq4-dc-Wo1Hb_kkmS2epvnjLPGUizZxmaoI2DJjjjOnCFfSaaK1ZKXkqkpLB47xytCKWJNRkZWkVCVAWYlMppTxPro_3e1Gfe2haYt12Me6e1lwShljWlPeUXcnygNAsYt-a-KxoCQVOuWU_wCAMWIu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228813</pqid></control><display><type>article</type><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><source>IEEE Electronic Library (IEL)</source><creator>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</creator><creatorcontrib>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</creatorcontrib><description>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3445368</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Adsorption energy ; Carbon monoxide ; Decoration ; Density functional theory ; density functional theory (DFT) calculation ; Environmental monitoring ; Frequency shift ; II-VI semiconductor materials ; Industrial safety ; Low concentrations ; Methane ; methane detection ; microcantilever ; Nanorods ; Pt-decorated ZnO nanorods (PZNRs) ; resonance frequency ; Room temperature ; Sensitivity ; Sensitivity analysis ; Sensors ; Temperature measurement ; Temperature sensors ; Zinc oxide</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29806-29813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0288-7333 ; 0000-0002-7621-2929 ; 0000-0002-5884-4287 ; 0000-0003-1988-8292 ; 0000-0003-4625-4420 ; 0000-0002-7541-9602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aprilia, Lia</creatorcontrib><creatorcontrib>Nuryadi, Ratno</creatorcontrib><creatorcontrib>Gandaryus Saputro, Adhitya</creatorcontrib><creatorcontrib>Arman Wella, Sasfan</creatorcontrib><creatorcontrib>Md Isa, Illyas</creatorcontrib><creatorcontrib>Abu Bakar, Suriani</creatorcontrib><creatorcontrib>Neo, Yoichiro</creatorcontrib><creatorcontrib>Mimura, Hidenori</creatorcontrib><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</description><subject>Adsorption</subject><subject>Adsorption energy</subject><subject>Carbon monoxide</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>density functional theory (DFT) calculation</subject><subject>Environmental monitoring</subject><subject>Frequency shift</subject><subject>II-VI semiconductor materials</subject><subject>Industrial safety</subject><subject>Low concentrations</subject><subject>Methane</subject><subject>methane detection</subject><subject>microcantilever</subject><subject>Nanorods</subject><subject>Pt-decorated ZnO nanorods (PZNRs)</subject><subject>resonance frequency</subject><subject>Room temperature</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Zinc oxide</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj19LwzAUxYMoOKcfQPAh4HNn_jbpo3Sbm8xNmAPxpaTpjWRszUy7wfz0VufTORx-514OQreUDCgl2cPzcjQfMMLEgAshearPUI9KqROqhD7_9Zwkgqv3S3TVNGtCaKak6iE33e5iOECF84nAQ2jBtj7UeNX6jf_29Sd-bZMh2BBN20Ef9QLPTR1iqJokD39ZRxs8PNZm6y1-8TYGa-quDgeIeLmPzli4RhfObBq4-dc-Wo1Hb_kkmS2epvnjLPGUizZxmaoI2DJjjjOnCFfSaaK1ZKXkqkpLB47xytCKWJNRkZWkVCVAWYlMppTxPro_3e1Gfe2haYt12Me6e1lwShljWlPeUXcnygNAsYt-a-KxoCQVOuWU_wCAMWIu</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Aprilia, Lia</creator><creator>Nuryadi, Ratno</creator><creator>Gandaryus Saputro, Adhitya</creator><creator>Arman Wella, Sasfan</creator><creator>Md Isa, Illyas</creator><creator>Abu Bakar, Suriani</creator><creator>Neo, Yoichiro</creator><creator>Mimura, Hidenori</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0288-7333</orcidid><orcidid>https://orcid.org/0000-0002-7621-2929</orcidid><orcidid>https://orcid.org/0000-0002-5884-4287</orcidid><orcidid>https://orcid.org/0000-0003-1988-8292</orcidid><orcidid>https://orcid.org/0000-0003-4625-4420</orcidid><orcidid>https://orcid.org/0000-0002-7541-9602</orcidid></search><sort><creationdate>20241001</creationdate><title>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</title><author>Aprilia, Lia ; Nuryadi, Ratno ; Gandaryus Saputro, Adhitya ; Arman Wella, Sasfan ; Md Isa, Illyas ; Abu Bakar, Suriani ; Neo, Yoichiro ; Mimura, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-f97d0ecb92f32f70375f808852b537d6bfef23da1d0ca9149b0b7beebd4956123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Adsorption energy</topic><topic>Carbon monoxide</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>density functional theory (DFT) calculation</topic><topic>Environmental monitoring</topic><topic>Frequency shift</topic><topic>II-VI semiconductor materials</topic><topic>Industrial safety</topic><topic>Low concentrations</topic><topic>Methane</topic><topic>methane detection</topic><topic>microcantilever</topic><topic>Nanorods</topic><topic>Pt-decorated ZnO nanorods (PZNRs)</topic><topic>resonance frequency</topic><topic>Room temperature</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprilia, Lia</creatorcontrib><creatorcontrib>Nuryadi, Ratno</creatorcontrib><creatorcontrib>Gandaryus Saputro, Adhitya</creatorcontrib><creatorcontrib>Arman Wella, Sasfan</creatorcontrib><creatorcontrib>Md Isa, Illyas</creatorcontrib><creatorcontrib>Abu Bakar, Suriani</creatorcontrib><creatorcontrib>Neo, Yoichiro</creatorcontrib><creatorcontrib>Mimura, Hidenori</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aprilia, Lia</au><au>Nuryadi, Ratno</au><au>Gandaryus Saputro, Adhitya</au><au>Arman Wella, Sasfan</au><au>Md Isa, Illyas</au><au>Abu Bakar, Suriani</au><au>Neo, Yoichiro</au><au>Mimura, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29806</spage><epage>29813</epage><pages>29806-29813</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Detecting methane (CH4) at room temperature through adsorption-based sensing poses a challenge due to its inert properties. In this study, we enhance both the sensitivity and selectivity of CH4 detection by decorating ZnO nanorods (ZNRs) with platinum (Pt), forming Pt-decorated ZNRs (PZNRs), which are then coated on a microcantilever surface. The sensor's response is monitored by measuring the resonance frequency shift, ranging from 3 to 20 Hz, and Q-factor of 194 to 208, as CH4 flows at rates of 10-100 mL/min under room temperature conditions. The introduction of Pt significantly enhances the sensor's sensitivity to picogram levels, enabling the detection of extremely low concentrations of CH4. To assess the sensor's selectivity, we compared its response to CH4 with that of carbon monoxide (CO). The results demonstrate that the sensor exhibits a substantially higher response to CH4, with CO detection showing minimal (9-19 times smaller than CH4) or no response. The presence of Pt atoms improves the ability of the PZNR surface to interact with CH4, which is further substantiated by density functional theory (DFT) analyses. These analyses reveal that the PZNRs exhibit greater selectivity toward CH4 than CO, as indicated by the more negative adsorption energy for CH4, suggesting a more stable and favorable adsorption configuration. The combination of high sensitivity, exceptional selectivity, and room temperature operation makes this sensor a highly effective and advantageous solution for CH4 detection, with potential applications in environmental monitoring, industrial safety, and energy sectors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3445368</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0288-7333</orcidid><orcidid>https://orcid.org/0000-0002-7621-2929</orcidid><orcidid>https://orcid.org/0000-0002-5884-4287</orcidid><orcidid>https://orcid.org/0000-0003-1988-8292</orcidid><orcidid>https://orcid.org/0000-0003-4625-4420</orcidid><orcidid>https://orcid.org/0000-0002-7541-9602</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (19), p.29806-29813 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3112228813 |
source | IEEE Electronic Library (IEL) |
subjects | Adsorption Adsorption energy Carbon monoxide Decoration Density functional theory density functional theory (DFT) calculation Environmental monitoring Frequency shift II-VI semiconductor materials Industrial safety Low concentrations Methane methane detection microcantilever Nanorods Pt-decorated ZnO nanorods (PZNRs) resonance frequency Room temperature Sensitivity Sensitivity analysis Sensors Temperature measurement Temperature sensors Zinc oxide |
title | Improved CH4 Detection Utilizing Pt-Decorated ZnO Nanorods-Coated on a Dynamic Microcantilever Surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20CH4%20Detection%20Utilizing%20Pt-Decorated%20ZnO%20Nanorods-Coated%20on%20a%20Dynamic%20Microcantilever%20Surface&rft.jtitle=IEEE%20sensors%20journal&rft.au=Aprilia,%20Lia&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29806&rft.epage=29813&rft.pages=29806-29813&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3445368&rft_dat=%3Cproquest_RIE%3E3112228813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228813&rft_id=info:pmid/&rft_ieee_id=10648631&rfr_iscdi=true |