Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications

First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-10, Vol.14 (10), p.105003-105003-11
Hauptverfasser: Bin, Li, Shahzad, Muhammad, Sadi, Muhammad Abdullah, Bitew, Girmaw Teshager, Farhan, Muhammad, Ali, Saqib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105003-11
container_issue 10
container_start_page 105003
container_title AIP advances
container_volume 14
creator Bin, Li
Shahzad, Muhammad
Sadi, Muhammad Abdullah
Bitew, Girmaw Teshager
Farhan, Muhammad
Ali, Saqib
description First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.
doi_str_mv 10.1063/5.0218291
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112200915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c32293f15cc47a3bfae8ccb6843cf8a</doaj_id><sourcerecordid>3112200915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpfQQEKSQ95A0FMLm0haSZaOxrRpgqGX5ixmZ6VEZr3aSjKt-_RV7WB6ylxm-PnmH2amaW4ZvWNUdffyjnKmuWFnzSVnUrcd5-rDf_VFc5PzhtYQhlEtLpvfywnGfQ6ZwDSQHLa7EUqIE4mexLnE1o0OS4pTwEzwFRJgcSn8OUHlV2yHsHVTrgKM5AmmXSbbOMUR9i5l4mMibnLpZU9gnseAh9Z83Zx7GLO7ectXzfPXLz9W39r194fH1XLdItddabVcqEEYjW6QCzksjOCs54NSkvemV66vi-hBewEMjaHMG-kVU4IprJLA7qp5PPoOETZ2TmELaW8jBHsQYnqxkErA0VmO9Uam80wiigV0vQenEXulRYdeQ_X6ePSaU_y5c7nYTdylunW2HWOcU2qYrNSnI4Up5pycP01l1P77k5X27U-V_XxkM4ZyOMw78F8PgZPB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112200915</pqid></control><display><type>article</type><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</creator><creatorcontrib>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</creatorcontrib><description>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0218291</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Efficiency ; Electromagnetic absorption ; Energy gap ; First principles ; Infrared radiation ; Molybdenum ; Monolayers ; Optoelectronic devices ; Photocatalysis ; Sulfur ; Two dimensional analysis ; Ultraviolet spectra ; Water splitting</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105003-105003-11</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</cites><orcidid>0000-0002-4789-2902 ; 0000-0001-5460-5548 ; 0000-0002-3787-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27911,27912</link.rule.ids></links><search><creatorcontrib>Bin, Li</creatorcontrib><creatorcontrib>Shahzad, Muhammad</creatorcontrib><creatorcontrib>Sadi, Muhammad Abdullah</creatorcontrib><creatorcontrib>Bitew, Girmaw Teshager</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><title>AIP advances</title><description>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</description><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Infrared radiation</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Optoelectronic devices</subject><subject>Photocatalysis</subject><subject>Sulfur</subject><subject>Two dimensional analysis</subject><subject>Ultraviolet spectra</subject><subject>Water splitting</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kcFqGzEQhpfQQEKSQ95A0FMLm0haSZaOxrRpgqGX5ixmZ6VEZr3aSjKt-_RV7WB6ylxm-PnmH2amaW4ZvWNUdffyjnKmuWFnzSVnUrcd5-rDf_VFc5PzhtYQhlEtLpvfywnGfQ6ZwDSQHLa7EUqIE4mexLnE1o0OS4pTwEzwFRJgcSn8OUHlV2yHsHVTrgKM5AmmXSbbOMUR9i5l4mMibnLpZU9gnseAh9Z83Zx7GLO7ectXzfPXLz9W39r194fH1XLdItddabVcqEEYjW6QCzksjOCs54NSkvemV66vi-hBewEMjaHMG-kVU4IprJLA7qp5PPoOETZ2TmELaW8jBHsQYnqxkErA0VmO9Uam80wiigV0vQenEXulRYdeQ_X6ePSaU_y5c7nYTdylunW2HWOcU2qYrNSnI4Up5pycP01l1P77k5X27U-V_XxkM4ZyOMw78F8PgZPB</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bin, Li</creator><creator>Shahzad, Muhammad</creator><creator>Sadi, Muhammad Abdullah</creator><creator>Bitew, Girmaw Teshager</creator><creator>Farhan, Muhammad</creator><creator>Ali, Saqib</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-5460-5548</orcidid><orcidid>https://orcid.org/0000-0002-3787-6132</orcidid></search><sort><creationdate>20241001</creationdate><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><author>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Infrared radiation</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Optoelectronic devices</topic><topic>Photocatalysis</topic><topic>Sulfur</topic><topic>Two dimensional analysis</topic><topic>Ultraviolet spectra</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bin, Li</creatorcontrib><creatorcontrib>Shahzad, Muhammad</creatorcontrib><creatorcontrib>Sadi, Muhammad Abdullah</creatorcontrib><creatorcontrib>Bitew, Girmaw Teshager</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bin, Li</au><au>Shahzad, Muhammad</au><au>Sadi, Muhammad Abdullah</au><au>Bitew, Girmaw Teshager</au><au>Farhan, Muhammad</au><au>Ali, Saqib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105003</spage><epage>105003-11</epage><pages>105003-105003-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0218291</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-5460-5548</orcidid><orcidid>https://orcid.org/0000-0002-3787-6132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-10, Vol.14 (10), p.105003-105003-11
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_3112200915
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Efficiency
Electromagnetic absorption
Energy gap
First principles
Infrared radiation
Molybdenum
Monolayers
Optoelectronic devices
Photocatalysis
Sulfur
Two dimensional analysis
Ultraviolet spectra
Water splitting
title Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20simulation%20of%20opto-electronics%20characterization%20of%20two-dimensional%20Janus%20monolayers%20for%20energy%20applications&rft.jtitle=AIP%20advances&rft.au=Bin,%20Li&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105003&rft.epage=105003-11&rft.pages=105003-105003-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0218291&rft_dat=%3Cproquest_cross%3E3112200915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112200915&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2c32293f15cc47a3bfae8ccb6843cf8a&rfr_iscdi=true