Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications
First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semicon...
Gespeichert in:
Veröffentlicht in: | AIP advances 2024-10, Vol.14 (10), p.105003-105003-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105003-11 |
---|---|
container_issue | 10 |
container_start_page | 105003 |
container_title | AIP advances |
container_volume | 14 |
creator | Bin, Li Shahzad, Muhammad Sadi, Muhammad Abdullah Bitew, Girmaw Teshager Farhan, Muhammad Ali, Saqib |
description | First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting. |
doi_str_mv | 10.1063/5.0218291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112200915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c32293f15cc47a3bfae8ccb6843cf8a</doaj_id><sourcerecordid>3112200915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpfQQEKSQ95A0FMLm0haSZaOxrRpgqGX5ixmZ6VEZr3aSjKt-_RV7WB6ylxm-PnmH2amaW4ZvWNUdffyjnKmuWFnzSVnUrcd5-rDf_VFc5PzhtYQhlEtLpvfywnGfQ6ZwDSQHLa7EUqIE4mexLnE1o0OS4pTwEzwFRJgcSn8OUHlV2yHsHVTrgKM5AmmXSbbOMUR9i5l4mMibnLpZU9gnseAh9Z83Zx7GLO7ectXzfPXLz9W39r194fH1XLdItddabVcqEEYjW6QCzksjOCs54NSkvemV66vi-hBewEMjaHMG-kVU4IprJLA7qp5PPoOETZ2TmELaW8jBHsQYnqxkErA0VmO9Uam80wiigV0vQenEXulRYdeQ_X6ePSaU_y5c7nYTdylunW2HWOcU2qYrNSnI4Up5pycP01l1P77k5X27U-V_XxkM4ZyOMw78F8PgZPB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112200915</pqid></control><display><type>article</type><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</creator><creatorcontrib>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</creatorcontrib><description>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0218291</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Efficiency ; Electromagnetic absorption ; Energy gap ; First principles ; Infrared radiation ; Molybdenum ; Monolayers ; Optoelectronic devices ; Photocatalysis ; Sulfur ; Two dimensional analysis ; Ultraviolet spectra ; Water splitting</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105003-105003-11</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</cites><orcidid>0000-0002-4789-2902 ; 0000-0001-5460-5548 ; 0000-0002-3787-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27911,27912</link.rule.ids></links><search><creatorcontrib>Bin, Li</creatorcontrib><creatorcontrib>Shahzad, Muhammad</creatorcontrib><creatorcontrib>Sadi, Muhammad Abdullah</creatorcontrib><creatorcontrib>Bitew, Girmaw Teshager</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><title>AIP advances</title><description>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</description><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Infrared radiation</subject><subject>Molybdenum</subject><subject>Monolayers</subject><subject>Optoelectronic devices</subject><subject>Photocatalysis</subject><subject>Sulfur</subject><subject>Two dimensional analysis</subject><subject>Ultraviolet spectra</subject><subject>Water splitting</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kcFqGzEQhpfQQEKSQ95A0FMLm0haSZaOxrRpgqGX5ixmZ6VEZr3aSjKt-_RV7WB6ylxm-PnmH2amaW4ZvWNUdffyjnKmuWFnzSVnUrcd5-rDf_VFc5PzhtYQhlEtLpvfywnGfQ6ZwDSQHLa7EUqIE4mexLnE1o0OS4pTwEzwFRJgcSn8OUHlV2yHsHVTrgKM5AmmXSbbOMUR9i5l4mMibnLpZU9gnseAh9Z83Zx7GLO7ectXzfPXLz9W39r194fH1XLdItddabVcqEEYjW6QCzksjOCs54NSkvemV66vi-hBewEMjaHMG-kVU4IprJLA7qp5PPoOETZ2TmELaW8jBHsQYnqxkErA0VmO9Uam80wiigV0vQenEXulRYdeQ_X6ePSaU_y5c7nYTdylunW2HWOcU2qYrNSnI4Up5pycP01l1P77k5X27U-V_XxkM4ZyOMw78F8PgZPB</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bin, Li</creator><creator>Shahzad, Muhammad</creator><creator>Sadi, Muhammad Abdullah</creator><creator>Bitew, Girmaw Teshager</creator><creator>Farhan, Muhammad</creator><creator>Ali, Saqib</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-5460-5548</orcidid><orcidid>https://orcid.org/0000-0002-3787-6132</orcidid></search><sort><creationdate>20241001</creationdate><title>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</title><author>Bin, Li ; Shahzad, Muhammad ; Sadi, Muhammad Abdullah ; Bitew, Girmaw Teshager ; Farhan, Muhammad ; Ali, Saqib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-8576d498ced575d79421b2d6652b9b6eb4918d8f4a1c9901f95f616416c4a14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Infrared radiation</topic><topic>Molybdenum</topic><topic>Monolayers</topic><topic>Optoelectronic devices</topic><topic>Photocatalysis</topic><topic>Sulfur</topic><topic>Two dimensional analysis</topic><topic>Ultraviolet spectra</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bin, Li</creatorcontrib><creatorcontrib>Shahzad, Muhammad</creatorcontrib><creatorcontrib>Sadi, Muhammad Abdullah</creatorcontrib><creatorcontrib>Bitew, Girmaw Teshager</creatorcontrib><creatorcontrib>Farhan, Muhammad</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bin, Li</au><au>Shahzad, Muhammad</au><au>Sadi, Muhammad Abdullah</au><au>Bitew, Girmaw Teshager</au><au>Farhan, Muhammad</au><au>Ali, Saqib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105003</spage><epage>105003-11</epage><pages>105003-105003-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>First-principles simulations are conducted to investigate the absorption and optoelectronic efficacy of molybdenum–sulfur–selenium, referred to here as MoSSe, and molybdenum–sulfur–oxygen, referred to here as MoSO, Janus monolayers. The materials MoSSe and MoSO demonstrate characteristics of semiconductors, as they possess bandgaps of 2.00 eV (direct) and 1.61 eV (indirect), respectively. This property renders them highly suitable for efficient light absorption. The efficiency of absorption of the device was calculated for the MoSSe and MoSO families, leading to the observation that these material families demonstrate a broad absorption range spanning from the infrared to the ultraviolet regions of the electromagnetic spectrum. This finding represents a novel discovery. Furthermore, the design as a topmost cell is particularly attractive due to its exceptional device absorption efficiency and broader bandgap. This particular family ensures that its band edges remain in alignment with the water-redox potentials. Molybdenum sulfide and molybdenum selenide exhibit promising potential as photocatalysts and in optoelectronic device applications. This is attributed to their appealing photocatalytic properties and notable efficiency in absorbing light for the purpose of water splitting.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0218291</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4789-2902</orcidid><orcidid>https://orcid.org/0000-0001-5460-5548</orcidid><orcidid>https://orcid.org/0000-0002-3787-6132</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2024-10, Vol.14 (10), p.105003-105003-11 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_3112200915 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Efficiency Electromagnetic absorption Energy gap First principles Infrared radiation Molybdenum Monolayers Optoelectronic devices Photocatalysis Sulfur Two dimensional analysis Ultraviolet spectra Water splitting |
title | Analysis and simulation of opto-electronics characterization of two-dimensional Janus monolayers for energy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20simulation%20of%20opto-electronics%20characterization%20of%20two-dimensional%20Janus%20monolayers%20for%20energy%20applications&rft.jtitle=AIP%20advances&rft.au=Bin,%20Li&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105003&rft.epage=105003-11&rft.pages=105003-105003-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0218291&rft_dat=%3Cproquest_cross%3E3112200915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112200915&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2c32293f15cc47a3bfae8ccb6843cf8a&rfr_iscdi=true |