A quick estimate for the volume of a polyhedron
Let P be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ + n and an affine subspace of codimension m in ℝ n . We show that a simple and computationally efficient formula approximates the volume of P within a factor of γ m , where γ > 0 is an absolute constant. The f...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2024, Vol.262 (1), p.449-473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 473 |
---|---|
container_issue | 1 |
container_start_page | 449 |
container_title | Israel journal of mathematics |
container_volume | 262 |
creator | Barvinok, Alexander Rudelson, Mark |
description | Let
P
be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ
+
n
and an affine subspace of codimension
m
in ℝ
n
. We show that a simple and computationally efficient formula approximates the volume of
P
within a factor of
γ
m
, where
γ
> 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family. |
doi_str_mv | 10.1007/s11856-024-2615-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112099997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112099997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-caf84b5f25ee7fc038b12f306b148fcaf1d957e35ee1c117a10bb1bc885de793</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYj-AG9NPFdm2u22HAlRMSHxwr3Z7bYCLhTaXRP49ZasiSfnMod5783MR8gjwjMCqElC1LJkwAvGS5TsfEVGKEvJtES8JiMAjoyj4rfkLqUtgBQKxYhMZvTYb-wXdanb7KrOUR8i7daOfoe23zkaPK3oIbSntWti2N-TG1-1yT389jFZvb6s5gu2_Hh7n8-WzPJSd8xWXhe19Fw6p7wFoWvkXkBZY6F9nmIzlcqJPEaLqCqEusbaai0bp6ZiTJ6G2EMMxz7fZrahj_u80QhEDtNcKqtwUNkYUorOm0PMT8STQTAXLGbAYjIWc8FiztnDB0_K2v2ni3_J_5t-AGfkZOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112099997</pqid></control><display><type>article</type><title>A quick estimate for the volume of a polyhedron</title><source>SpringerLink Journals</source><creator>Barvinok, Alexander ; Rudelson, Mark</creator><creatorcontrib>Barvinok, Alexander ; Rudelson, Mark</creatorcontrib><description>Let
P
be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ
+
n
and an affine subspace of codimension
m
in ℝ
n
. We show that a simple and computationally efficient formula approximates the volume of
P
within a factor of
γ
m
, where
γ
> 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-024-2615-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Polyhedra ; Polytopes ; Theoretical</subject><ispartof>Israel journal of mathematics, 2024, Vol.262 (1), p.449-473</ispartof><rights>The Hebrew University of Jerusalem 2024</rights><rights>The Hebrew University of Jerusalem 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-caf84b5f25ee7fc038b12f306b148fcaf1d957e35ee1c117a10bb1bc885de793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-024-2615-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-024-2615-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Barvinok, Alexander</creatorcontrib><creatorcontrib>Rudelson, Mark</creatorcontrib><title>A quick estimate for the volume of a polyhedron</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Let
P
be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ
+
n
and an affine subspace of codimension
m
in ℝ
n
. We show that a simple and computationally efficient formula approximates the volume of
P
within a factor of
γ
m
, where
γ
> 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyhedra</subject><subject>Polytopes</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYj-AG9NPFdm2u22HAlRMSHxwr3Z7bYCLhTaXRP49ZasiSfnMod5783MR8gjwjMCqElC1LJkwAvGS5TsfEVGKEvJtES8JiMAjoyj4rfkLqUtgBQKxYhMZvTYb-wXdanb7KrOUR8i7daOfoe23zkaPK3oIbSntWti2N-TG1-1yT389jFZvb6s5gu2_Hh7n8-WzPJSd8xWXhe19Fw6p7wFoWvkXkBZY6F9nmIzlcqJPEaLqCqEusbaai0bp6ZiTJ6G2EMMxz7fZrahj_u80QhEDtNcKqtwUNkYUorOm0PMT8STQTAXLGbAYjIWc8FiztnDB0_K2v2ni3_J_5t-AGfkZOA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Barvinok, Alexander</creator><creator>Rudelson, Mark</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A quick estimate for the volume of a polyhedron</title><author>Barvinok, Alexander ; Rudelson, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-caf84b5f25ee7fc038b12f306b148fcaf1d957e35ee1c117a10bb1bc885de793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyhedra</topic><topic>Polytopes</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barvinok, Alexander</creatorcontrib><creatorcontrib>Rudelson, Mark</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barvinok, Alexander</au><au>Rudelson, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quick estimate for the volume of a polyhedron</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2024</date><risdate>2024</risdate><volume>262</volume><issue>1</issue><spage>449</spage><epage>473</epage><pages>449-473</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Let
P
be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ
+
n
and an affine subspace of codimension
m
in ℝ
n
. We show that a simple and computationally efficient formula approximates the volume of
P
within a factor of
γ
m
, where
γ
> 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-024-2615-z</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2024, Vol.262 (1), p.449-473 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_3112099997 |
source | SpringerLink Journals |
subjects | Algebra Analysis Applications of Mathematics Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Polyhedra Polytopes Theoretical |
title | A quick estimate for the volume of a polyhedron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quick%20estimate%20for%20the%20volume%20of%20a%20polyhedron&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Barvinok,%20Alexander&rft.date=2024&rft.volume=262&rft.issue=1&rft.spage=449&rft.epage=473&rft.pages=449-473&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-024-2615-z&rft_dat=%3Cproquest_cross%3E3112099997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112099997&rft_id=info:pmid/&rfr_iscdi=true |