Numerical solutions of ordinary differential equations using Spline-Integral Operator
In this work, we introduce a novel numerical method for solving initial value problems associated with a given differential. Our approach utilizes a spline approximation of the theoretical solution alongside the integral formulation of the analytical solution. Furthermore, we offer a rigorous proof...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Salgado, Gustavo H O Romanelli, João P R |
description | In this work, we introduce a novel numerical method for solving initial value problems associated with a given differential. Our approach utilizes a spline approximation of the theoretical solution alongside the integral formulation of the analytical solution. Furthermore, we offer a rigorous proof of the method's order and provide a comprehensive stability analysis. Additionally, we showcase the effectiveness method through some examples, comparing with Taylor's methods of same order. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111728621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111728621</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117286213</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC01if3ZRdNFBnUuwNyUlJulNMvj2FvQBnM5wvgXJuBCsaHecr0gewliWJa8bXlUiI49LegHqpzQ0OJOidjZQp6jDXluJb9prpQDBRj0TmJL8khS0HejNG22hONsIA87_6gFldLghSyVNgPzXNdkeD_f9qfDopgQhdqNLaOfVCcZYw9uaM_Gf-gBoQUHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111728621</pqid></control><display><type>article</type><title>Numerical solutions of ordinary differential equations using Spline-Integral Operator</title><source>Open Access Journals</source><creator>Salgado, Gustavo H O ; Romanelli, João P R</creator><creatorcontrib>Salgado, Gustavo H O ; Romanelli, João P R</creatorcontrib><description>In this work, we introduce a novel numerical method for solving initial value problems associated with a given differential. Our approach utilizes a spline approximation of the theoretical solution alongside the integral formulation of the analytical solution. Furthermore, we offer a rigorous proof of the method's order and provide a comprehensive stability analysis. Additionally, we showcase the effectiveness method through some examples, comparing with Taylor's methods of same order.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary value problems ; Differential equations ; Exact solutions ; Mathematical analysis ; Numerical methods ; Operators (mathematics) ; Stability analysis</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Salgado, Gustavo H O</creatorcontrib><creatorcontrib>Romanelli, João P R</creatorcontrib><title>Numerical solutions of ordinary differential equations using Spline-Integral Operator</title><title>arXiv.org</title><description>In this work, we introduce a novel numerical method for solving initial value problems associated with a given differential. Our approach utilizes a spline approximation of the theoretical solution alongside the integral formulation of the analytical solution. Furthermore, we offer a rigorous proof of the method's order and provide a comprehensive stability analysis. Additionally, we showcase the effectiveness method through some examples, comparing with Taylor's methods of same order.</description><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Stability analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC01if3ZRdNFBnUuwNyUlJulNMvj2FvQBnM5wvgXJuBCsaHecr0gewliWJa8bXlUiI49LegHqpzQ0OJOidjZQp6jDXluJb9prpQDBRj0TmJL8khS0HejNG22hONsIA87_6gFldLghSyVNgPzXNdkeD_f9qfDopgQhdqNLaOfVCcZYw9uaM_Gf-gBoQUHt</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Salgado, Gustavo H O</creator><creator>Romanelli, João P R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240930</creationdate><title>Numerical solutions of ordinary differential equations using Spline-Integral Operator</title><author>Salgado, Gustavo H O ; Romanelli, João P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117286213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Salgado, Gustavo H O</creatorcontrib><creatorcontrib>Romanelli, João P R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado, Gustavo H O</au><au>Romanelli, João P R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical solutions of ordinary differential equations using Spline-Integral Operator</atitle><jtitle>arXiv.org</jtitle><date>2024-09-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work, we introduce a novel numerical method for solving initial value problems associated with a given differential. Our approach utilizes a spline approximation of the theoretical solution alongside the integral formulation of the analytical solution. Furthermore, we offer a rigorous proof of the method's order and provide a comprehensive stability analysis. Additionally, we showcase the effectiveness method through some examples, comparing with Taylor's methods of same order.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111728621 |
source | Open Access Journals |
subjects | Boundary value problems Differential equations Exact solutions Mathematical analysis Numerical methods Operators (mathematics) Stability analysis |
title | Numerical solutions of ordinary differential equations using Spline-Integral Operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20solutions%20of%20ordinary%20differential%20equations%20using%20Spline-Integral%20Operator&rft.jtitle=arXiv.org&rft.au=Salgado,%20Gustavo%20H%20O&rft.date=2024-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111728621%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111728621&rft_id=info:pmid/&rfr_iscdi=true |