Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification
Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Du, Wumei Liang, Dong Lv, Yiqin Liang, Xingxing Wu, Guanlin Wang, Qi Xie, Zheng |
description | Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111726644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111726644</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117266443</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKNp_uCC4K7RJH-JOiq-FXWj3JZbbGq1JTVL7-wb0A1zNMHNmRmRKGQv9VUTphHjG3IMgoElK45hNyWuvVd_BEs44oGhudg0byNUbW8iUsf4FpRFWvBE2XacVr25gFZxc1HArZANZy42B4_PKWy4rBCEhRzso_YBC87oW1RcRzrmFknMyrnlr0PvpjCx22yI7-O7-1aOx5V31WrqqZGEYpjRJooj9R30AYgVKKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111726644</pqid></control><display><type>article</type><title>Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification</title><source>Free E- Journals</source><creator>Du, Wumei ; Liang, Dong ; Lv, Yiqin ; Liang, Xingxing ; Wu, Guanlin ; Wang, Qi ; Xie, Zheng</creator><creatorcontrib>Du, Wumei ; Liang, Dong ; Lv, Yiqin ; Liang, Xingxing ; Wu, Guanlin ; Wang, Qi ; Xie, Zheng</creatorcontrib><description>Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Communications traffic ; Data analysis ; Design optimization ; Internet ; Machine learning ; Optimization ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Du, Wumei</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Lv, Yiqin</creatorcontrib><creatorcontrib>Liang, Xingxing</creatorcontrib><creatorcontrib>Wu, Guanlin</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Zheng</creatorcontrib><title>Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification</title><title>arXiv.org</title><description>Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.</description><subject>Classification</subject><subject>Communications traffic</subject><subject>Data analysis</subject><subject>Design optimization</subject><subject>Internet</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgKNp_uCC4K7RJH-JOiq-FXWj3JZbbGq1JTVL7-wb0A1zNMHNmRmRKGQv9VUTphHjG3IMgoElK45hNyWuvVd_BEs44oGhudg0byNUbW8iUsf4FpRFWvBE2XacVr25gFZxc1HArZANZy42B4_PKWy4rBCEhRzso_YBC87oW1RcRzrmFknMyrnlr0PvpjCx22yI7-O7-1aOx5V31WrqqZGEYpjRJooj9R30AYgVKKQ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Du, Wumei</creator><creator>Liang, Dong</creator><creator>Lv, Yiqin</creator><creator>Liang, Xingxing</creator><creator>Wu, Guanlin</creator><creator>Wang, Qi</creator><creator>Xie, Zheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241212</creationdate><title>Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification</title><author>Du, Wumei ; Liang, Dong ; Lv, Yiqin ; Liang, Xingxing ; Wu, Guanlin ; Wang, Qi ; Xie, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117266443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Communications traffic</topic><topic>Data analysis</topic><topic>Design optimization</topic><topic>Internet</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Du, Wumei</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Lv, Yiqin</creatorcontrib><creatorcontrib>Liang, Xingxing</creatorcontrib><creatorcontrib>Wu, Guanlin</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Xie, Zheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Wumei</au><au>Liang, Dong</au><au>Lv, Yiqin</au><au>Liang, Xingxing</au><au>Wu, Guanlin</au><au>Wang, Qi</au><au>Xie, Zheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification</atitle><jtitle>arXiv.org</jtitle><date>2024-12-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111726644 |
source | Free E- Journals |
subjects | Classification Communications traffic Data analysis Design optimization Internet Machine learning Optimization Robustness (mathematics) |
title | Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Group%20&%20Reweight:%20A%20Novel%20Cost-Sensitive%20Approach%20to%20Mitigating%20Class%20Imbalance%20in%20Network%20Traffic%20Classification&rft.jtitle=arXiv.org&rft.au=Du,%20Wumei&rft.date=2024-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111726644%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111726644&rft_id=info:pmid/&rfr_iscdi=true |