PerCo (SD): Open Perceptual Compression
We introduce PerCo (SD), a perceptual image compression method based on Stable Diffusion v2.1, targeting the ultra-low bit range. PerCo (SD) serves as an open and competitive alternative to the state-of-the-art method PerCo, which relies on a proprietary variant of GLIDE and remains closed to the pu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Körber, Nikolai Kromer, Eduard Siebert, Andreas Hauke, Sascha Mueller-Gritschneder, Daniel Schuller, Björn |
description | We introduce PerCo (SD), a perceptual image compression method based on Stable Diffusion v2.1, targeting the ultra-low bit range. PerCo (SD) serves as an open and competitive alternative to the state-of-the-art method PerCo, which relies on a proprietary variant of GLIDE and remains closed to the public. In this work, we review the theoretical foundations, discuss key engineering decisions in adapting PerCo to the Stable Diffusion ecosystem, and provide a comprehensive comparison, both quantitatively and qualitatively. On the MSCOCO-30k dataset, PerCo (SD) demonstrates improved perceptual characteristics at the cost of higher distortion. We partly attribute this gap to the different model capacities being used (866M vs. 1.4B). We hope our work contributes to a deeper understanding of the underlying mechanisms and paves the way for future advancements in the field. Code and trained models will be released at https://github.com/Nikolai10/PerCo. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111725523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111725523</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117255233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQD0gtcs5X0Ah20bRS8C9IzVMACiSnFpSUJuYoOOfnFhSlFhdn5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhIch0oK3EqQIA5HsunA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111725523</pqid></control><display><type>article</type><title>PerCo (SD): Open Perceptual Compression</title><source>Free E- Journals</source><creator>Körber, Nikolai ; Kromer, Eduard ; Siebert, Andreas ; Hauke, Sascha ; Mueller-Gritschneder, Daniel ; Schuller, Björn</creator><creatorcontrib>Körber, Nikolai ; Kromer, Eduard ; Siebert, Andreas ; Hauke, Sascha ; Mueller-Gritschneder, Daniel ; Schuller, Björn</creatorcontrib><description>We introduce PerCo (SD), a perceptual image compression method based on Stable Diffusion v2.1, targeting the ultra-low bit range. PerCo (SD) serves as an open and competitive alternative to the state-of-the-art method PerCo, which relies on a proprietary variant of GLIDE and remains closed to the public. In this work, we review the theoretical foundations, discuss key engineering decisions in adapting PerCo to the Stable Diffusion ecosystem, and provide a comprehensive comparison, both quantitatively and qualitatively. On the MSCOCO-30k dataset, PerCo (SD) demonstrates improved perceptual characteristics at the cost of higher distortion. We partly attribute this gap to the different model capacities being used (866M vs. 1.4B). We hope our work contributes to a deeper understanding of the underlying mechanisms and paves the way for future advancements in the field. Code and trained models will be released at https://github.com/Nikolai10/PerCo.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image compression ; State-of-the-art reviews</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Körber, Nikolai</creatorcontrib><creatorcontrib>Kromer, Eduard</creatorcontrib><creatorcontrib>Siebert, Andreas</creatorcontrib><creatorcontrib>Hauke, Sascha</creatorcontrib><creatorcontrib>Mueller-Gritschneder, Daniel</creatorcontrib><creatorcontrib>Schuller, Björn</creatorcontrib><title>PerCo (SD): Open Perceptual Compression</title><title>arXiv.org</title><description>We introduce PerCo (SD), a perceptual image compression method based on Stable Diffusion v2.1, targeting the ultra-low bit range. PerCo (SD) serves as an open and competitive alternative to the state-of-the-art method PerCo, which relies on a proprietary variant of GLIDE and remains closed to the public. In this work, we review the theoretical foundations, discuss key engineering decisions in adapting PerCo to the Stable Diffusion ecosystem, and provide a comprehensive comparison, both quantitatively and qualitatively. On the MSCOCO-30k dataset, PerCo (SD) demonstrates improved perceptual characteristics at the cost of higher distortion. We partly attribute this gap to the different model capacities being used (866M vs. 1.4B). We hope our work contributes to a deeper understanding of the underlying mechanisms and paves the way for future advancements in the field. Code and trained models will be released at https://github.com/Nikolai10/PerCo.</description><subject>Image compression</subject><subject>State-of-the-art reviews</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQD0gtcs5X0Ah20bRS8C9IzVMACiSnFpSUJuYoOOfnFhSlFhdn5ufxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8saGhIch0oK3EqQIA5HsunA</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Körber, Nikolai</creator><creator>Kromer, Eduard</creator><creator>Siebert, Andreas</creator><creator>Hauke, Sascha</creator><creator>Mueller-Gritschneder, Daniel</creator><creator>Schuller, Björn</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240930</creationdate><title>PerCo (SD): Open Perceptual Compression</title><author>Körber, Nikolai ; Kromer, Eduard ; Siebert, Andreas ; Hauke, Sascha ; Mueller-Gritschneder, Daniel ; Schuller, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117255233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image compression</topic><topic>State-of-the-art reviews</topic><toplevel>online_resources</toplevel><creatorcontrib>Körber, Nikolai</creatorcontrib><creatorcontrib>Kromer, Eduard</creatorcontrib><creatorcontrib>Siebert, Andreas</creatorcontrib><creatorcontrib>Hauke, Sascha</creatorcontrib><creatorcontrib>Mueller-Gritschneder, Daniel</creatorcontrib><creatorcontrib>Schuller, Björn</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Körber, Nikolai</au><au>Kromer, Eduard</au><au>Siebert, Andreas</au><au>Hauke, Sascha</au><au>Mueller-Gritschneder, Daniel</au><au>Schuller, Björn</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PerCo (SD): Open Perceptual Compression</atitle><jtitle>arXiv.org</jtitle><date>2024-09-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce PerCo (SD), a perceptual image compression method based on Stable Diffusion v2.1, targeting the ultra-low bit range. PerCo (SD) serves as an open and competitive alternative to the state-of-the-art method PerCo, which relies on a proprietary variant of GLIDE and remains closed to the public. In this work, we review the theoretical foundations, discuss key engineering decisions in adapting PerCo to the Stable Diffusion ecosystem, and provide a comprehensive comparison, both quantitatively and qualitatively. On the MSCOCO-30k dataset, PerCo (SD) demonstrates improved perceptual characteristics at the cost of higher distortion. We partly attribute this gap to the different model capacities being used (866M vs. 1.4B). We hope our work contributes to a deeper understanding of the underlying mechanisms and paves the way for future advancements in the field. Code and trained models will be released at https://github.com/Nikolai10/PerCo.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111725523 |
source | Free E- Journals |
subjects | Image compression State-of-the-art reviews |
title | PerCo (SD): Open Perceptual Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PerCo%20(SD):%20Open%20Perceptual%20Compression&rft.jtitle=arXiv.org&rft.au=K%C3%B6rber,%20Nikolai&rft.date=2024-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111725523%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111725523&rft_id=info:pmid/&rfr_iscdi=true |