Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales

Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnair...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Maor Reuben, Ortal Slobodin, Elyshar, Aviad, Cohen, Idan-Chaim, Braun-Lewensohn, Orna, Cohen, Odeya, Puzis, Rami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Maor Reuben
Ortal Slobodin
Elyshar, Aviad
Cohen, Idan-Chaim
Braun-Lewensohn, Orna
Cohen, Odeya
Puzis, Rami
description Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111725235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111725235</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117252353</originalsourceid><addsrcrecordid>eNqNjkEKwjAQRYMgWLR3GHBdaBKrbkUUD-BeQjqtKe2kZpKFtzeCB3D1H7y3-AtRKK1lddwptRIl81DXtdofVNPoQrgTMzJPSBEMtTAZcnMaTXSewHeQ6ausJ44h2cjgCOaAVQzGEbY5oD6ZHmHyLY4MiR31MPPbPv2EMTgLbM2IvBHLzoyM5W_XYnu93M-3ag7-lZDjY_ApUFYPLaXM_5Ru9H_VB2UxSX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111725235</pqid></control><display><type>article</type><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><source>Free E- Journals</source><creator>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</creator><creatorcontrib>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</creatorcontrib><description>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Controllability ; Human performance ; Large language models ; Psychology ; Quantitative psychology ; Questionnaires</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Maor Reuben</creatorcontrib><creatorcontrib>Ortal Slobodin</creatorcontrib><creatorcontrib>Elyshar, Aviad</creatorcontrib><creatorcontrib>Cohen, Idan-Chaim</creatorcontrib><creatorcontrib>Braun-Lewensohn, Orna</creatorcontrib><creatorcontrib>Cohen, Odeya</creatorcontrib><creatorcontrib>Puzis, Rami</creatorcontrib><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><title>arXiv.org</title><description>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</description><subject>Controllability</subject><subject>Human performance</subject><subject>Large language models</subject><subject>Psychology</subject><subject>Quantitative psychology</subject><subject>Questionnaires</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAQRYMgWLR3GHBdaBKrbkUUD-BeQjqtKe2kZpKFtzeCB3D1H7y3-AtRKK1lddwptRIl81DXtdofVNPoQrgTMzJPSBEMtTAZcnMaTXSewHeQ6ausJ44h2cjgCOaAVQzGEbY5oD6ZHmHyLY4MiR31MPPbPv2EMTgLbM2IvBHLzoyM5W_XYnu93M-3ag7-lZDjY_ApUFYPLaXM_5Ru9H_VB2UxSX4</recordid><startdate>20240929</startdate><enddate>20240929</enddate><creator>Maor Reuben</creator><creator>Ortal Slobodin</creator><creator>Elyshar, Aviad</creator><creator>Cohen, Idan-Chaim</creator><creator>Braun-Lewensohn, Orna</creator><creator>Cohen, Odeya</creator><creator>Puzis, Rami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240929</creationdate><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><author>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117252353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>Human performance</topic><topic>Large language models</topic><topic>Psychology</topic><topic>Quantitative psychology</topic><topic>Questionnaires</topic><toplevel>online_resources</toplevel><creatorcontrib>Maor Reuben</creatorcontrib><creatorcontrib>Ortal Slobodin</creatorcontrib><creatorcontrib>Elyshar, Aviad</creatorcontrib><creatorcontrib>Cohen, Idan-Chaim</creatorcontrib><creatorcontrib>Braun-Lewensohn, Orna</creatorcontrib><creatorcontrib>Cohen, Odeya</creatorcontrib><creatorcontrib>Puzis, Rami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maor Reuben</au><au>Ortal Slobodin</au><au>Elyshar, Aviad</au><au>Cohen, Idan-Chaim</au><au>Braun-Lewensohn, Orna</au><au>Cohen, Odeya</au><au>Puzis, Rami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</atitle><jtitle>arXiv.org</jtitle><date>2024-09-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3111725235
source Free E- Journals
subjects Controllability
Human performance
Large language models
Psychology
Quantitative psychology
Questionnaires
title Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Assessment%20and%20manipulation%20of%20latent%20constructs%20in%20pre-trained%20language%20models%20using%20psychometric%20scales&rft.jtitle=arXiv.org&rft.au=Maor%20Reuben&rft.date=2024-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111725235%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111725235&rft_id=info:pmid/&rfr_iscdi=true