Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales
Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnair...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maor Reuben Ortal Slobodin Elyshar, Aviad Cohen, Idan-Chaim Braun-Lewensohn, Orna Cohen, Odeya Puzis, Rami |
description | Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111725235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111725235</sourcerecordid><originalsourceid>FETCH-proquest_journals_31117252353</originalsourceid><addsrcrecordid>eNqNjkEKwjAQRYMgWLR3GHBdaBKrbkUUD-BeQjqtKe2kZpKFtzeCB3D1H7y3-AtRKK1lddwptRIl81DXtdofVNPoQrgTMzJPSBEMtTAZcnMaTXSewHeQ6ausJ44h2cjgCOaAVQzGEbY5oD6ZHmHyLY4MiR31MPPbPv2EMTgLbM2IvBHLzoyM5W_XYnu93M-3ag7-lZDjY_ApUFYPLaXM_5Ru9H_VB2UxSX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111725235</pqid></control><display><type>article</type><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><source>Free E- Journals</source><creator>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</creator><creatorcontrib>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</creatorcontrib><description>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Controllability ; Human performance ; Large language models ; Psychology ; Quantitative psychology ; Questionnaires</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Maor Reuben</creatorcontrib><creatorcontrib>Ortal Slobodin</creatorcontrib><creatorcontrib>Elyshar, Aviad</creatorcontrib><creatorcontrib>Cohen, Idan-Chaim</creatorcontrib><creatorcontrib>Braun-Lewensohn, Orna</creatorcontrib><creatorcontrib>Cohen, Odeya</creatorcontrib><creatorcontrib>Puzis, Rami</creatorcontrib><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><title>arXiv.org</title><description>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</description><subject>Controllability</subject><subject>Human performance</subject><subject>Large language models</subject><subject>Psychology</subject><subject>Quantitative psychology</subject><subject>Questionnaires</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAQRYMgWLR3GHBdaBKrbkUUD-BeQjqtKe2kZpKFtzeCB3D1H7y3-AtRKK1lddwptRIl81DXtdofVNPoQrgTMzJPSBEMtTAZcnMaTXSewHeQ6ausJ44h2cjgCOaAVQzGEbY5oD6ZHmHyLY4MiR31MPPbPv2EMTgLbM2IvBHLzoyM5W_XYnu93M-3ag7-lZDjY_ApUFYPLaXM_5Ru9H_VB2UxSX4</recordid><startdate>20240929</startdate><enddate>20240929</enddate><creator>Maor Reuben</creator><creator>Ortal Slobodin</creator><creator>Elyshar, Aviad</creator><creator>Cohen, Idan-Chaim</creator><creator>Braun-Lewensohn, Orna</creator><creator>Cohen, Odeya</creator><creator>Puzis, Rami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240929</creationdate><title>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</title><author>Maor Reuben ; Ortal Slobodin ; Elyshar, Aviad ; Cohen, Idan-Chaim ; Braun-Lewensohn, Orna ; Cohen, Odeya ; Puzis, Rami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31117252353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>Human performance</topic><topic>Large language models</topic><topic>Psychology</topic><topic>Quantitative psychology</topic><topic>Questionnaires</topic><toplevel>online_resources</toplevel><creatorcontrib>Maor Reuben</creatorcontrib><creatorcontrib>Ortal Slobodin</creatorcontrib><creatorcontrib>Elyshar, Aviad</creatorcontrib><creatorcontrib>Cohen, Idan-Chaim</creatorcontrib><creatorcontrib>Braun-Lewensohn, Orna</creatorcontrib><creatorcontrib>Cohen, Odeya</creatorcontrib><creatorcontrib>Puzis, Rami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maor Reuben</au><au>Ortal Slobodin</au><au>Elyshar, Aviad</au><au>Cohen, Idan-Chaim</au><au>Braun-Lewensohn, Orna</au><au>Cohen, Odeya</au><au>Puzis, Rami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales</atitle><jtitle>arXiv.org</jtitle><date>2024-09-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111725235 |
source | Free E- Journals |
subjects | Controllability Human performance Large language models Psychology Quantitative psychology Questionnaires |
title | Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Assessment%20and%20manipulation%20of%20latent%20constructs%20in%20pre-trained%20language%20models%20using%20psychometric%20scales&rft.jtitle=arXiv.org&rft.au=Maor%20Reuben&rft.date=2024-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111725235%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111725235&rft_id=info:pmid/&rfr_iscdi=true |