Schubert Calculus and the Heisenberg Algebra

We show that the Hilbert space with basis indexed by infinite permutations and the cohomology ring of the infinite flag variety can be seen as representations of the Heisenberg algebra, which are isomorphic using the back-stable Schubert polynomials. We give a model for infinite permutations as cert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
1. Verfasser: Zhang, Sylvester W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Hilbert space with basis indexed by infinite permutations and the cohomology ring of the infinite flag variety can be seen as representations of the Heisenberg algebra, which are isomorphic using the back-stable Schubert polynomials. We give a model for infinite permutations as certain two dimensional fermions, generalizing the Maya diagram construction for partitions. Under this framework, the pipedream model for Schubert polynomials can be viewed as the Hamiltonian time evolution of the 2D fermions.
ISSN:2331-8422