Analysis on the shape of α-Sn CQDs

In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-10, Vol.136 (13)
Hauptverfasser: Kandegedara, R. M. E. B., Krishnamurthy, Srini, Grein, Christoph, Sivananthan, Sivalingam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 136
creator Kandegedara, R. M. E. B.
Krishnamurthy, Srini
Grein, Christoph
Sivananthan, Sivalingam
description In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.
doi_str_mv 10.1063/5.0219505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111703732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111703732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFIzVhW8Q6Eoh9d6ZTmZmWWr9gYKIuh5uJhmaUpM4ky76WL6Iz2QkXbs6cPi4XA5j1wgzhFzcyRlwNBLkCUsQtMmUlHDKEhjqTBtlztlFjFsARC1MwqaLhnaHWMe0bdJ-U6VxQ12Vtj79-c7emnT5eh8v2ZmnXayujjlhHw-r9-VTtn55fF4u1plDzfuspLlG7UlxQ8JQPoe8FLIqHM-FyIUxnpMuHXFFhS68JEAYyiGcK5QXYsKm490utF_7KvZ22-7D8F-0AhEVCCX4oG5G5UIbY6i87UL9SeFgEezfBlba4waDvR1tdHVPfd02_-BfMA5Y9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111703732</pqid></control><display><type>article</type><title>Analysis on the shape of α-Sn CQDs</title><source>Alma/SFX Local Collection</source><creator>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</creator><creatorcontrib>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</creatorcontrib><description>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0219505</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorptivity ; Bulk density ; Cost analysis ; Density functional theory ; Energy gap ; Energy levels ; Infrared analysis ; Infrared imaging ; Mercury tellurides ; Nanoparticles ; Performance evaluation ; Quantum dots ; Shape effects ; Spherical shells</subject><ispartof>Journal of applied physics, 2024-10, Vol.136 (13)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</cites><orcidid>0000-0002-8492-2090 ; 0000-0001-9792-3984 ; 0000-0001-6915-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kandegedara, R. M. E. B.</creatorcontrib><creatorcontrib>Krishnamurthy, Srini</creatorcontrib><creatorcontrib>Grein, Christoph</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><title>Analysis on the shape of α-Sn CQDs</title><title>Journal of applied physics</title><description>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</description><subject>Absorptivity</subject><subject>Bulk density</subject><subject>Cost analysis</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Mercury tellurides</subject><subject>Nanoparticles</subject><subject>Performance evaluation</subject><subject>Quantum dots</subject><subject>Shape effects</subject><subject>Spherical shells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFIzVhW8Q6Eoh9d6ZTmZmWWr9gYKIuh5uJhmaUpM4ky76WL6Iz2QkXbs6cPi4XA5j1wgzhFzcyRlwNBLkCUsQtMmUlHDKEhjqTBtlztlFjFsARC1MwqaLhnaHWMe0bdJ-U6VxQ12Vtj79-c7emnT5eh8v2ZmnXayujjlhHw-r9-VTtn55fF4u1plDzfuspLlG7UlxQ8JQPoe8FLIqHM-FyIUxnpMuHXFFhS68JEAYyiGcK5QXYsKm490utF_7KvZ22-7D8F-0AhEVCCX4oG5G5UIbY6i87UL9SeFgEezfBlba4waDvR1tdHVPfd02_-BfMA5Y9w</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Kandegedara, R. M. E. B.</creator><creator>Krishnamurthy, Srini</creator><creator>Grein, Christoph</creator><creator>Sivananthan, Sivalingam</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8492-2090</orcidid><orcidid>https://orcid.org/0000-0001-9792-3984</orcidid><orcidid>https://orcid.org/0000-0001-6915-7899</orcidid></search><sort><creationdate>20241007</creationdate><title>Analysis on the shape of α-Sn CQDs</title><author>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Bulk density</topic><topic>Cost analysis</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Mercury tellurides</topic><topic>Nanoparticles</topic><topic>Performance evaluation</topic><topic>Quantum dots</topic><topic>Shape effects</topic><topic>Spherical shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandegedara, R. M. E. B.</creatorcontrib><creatorcontrib>Krishnamurthy, Srini</creatorcontrib><creatorcontrib>Grein, Christoph</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandegedara, R. M. E. B.</au><au>Krishnamurthy, Srini</au><au>Grein, Christoph</au><au>Sivananthan, Sivalingam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on the shape of α-Sn CQDs</atitle><jtitle>Journal of applied physics</jtitle><date>2024-10-07</date><risdate>2024</risdate><volume>136</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0219505</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8492-2090</orcidid><orcidid>https://orcid.org/0000-0001-9792-3984</orcidid><orcidid>https://orcid.org/0000-0001-6915-7899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-10, Vol.136 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_3111703732
source Alma/SFX Local Collection
subjects Absorptivity
Bulk density
Cost analysis
Density functional theory
Energy gap
Energy levels
Infrared analysis
Infrared imaging
Mercury tellurides
Nanoparticles
Performance evaluation
Quantum dots
Shape effects
Spherical shells
title Analysis on the shape of α-Sn CQDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20the%20shape%20of%20%CE%B1-Sn%20CQDs&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kandegedara,%20R.%20M.%20E.%20B.&rft.date=2024-10-07&rft.volume=136&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0219505&rft_dat=%3Cproquest_cross%3E3111703732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111703732&rft_id=info:pmid/&rfr_iscdi=true