Analysis on the shape of α-Sn CQDs
In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate α-Sn CQDs, an...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-10, Vol.136 (13) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Kandegedara, R. M. E. B. Krishnamurthy, Srini Grein, Christoph Sivananthan, Sivalingam |
description | In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate
α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of
α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport. |
doi_str_mv | 10.1063/5.0219505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111703732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111703732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFIzVhW8Q6Eoh9d6ZTmZmWWr9gYKIuh5uJhmaUpM4ky76WL6Iz2QkXbs6cPi4XA5j1wgzhFzcyRlwNBLkCUsQtMmUlHDKEhjqTBtlztlFjFsARC1MwqaLhnaHWMe0bdJ-U6VxQ12Vtj79-c7emnT5eh8v2ZmnXayujjlhHw-r9-VTtn55fF4u1plDzfuspLlG7UlxQ8JQPoe8FLIqHM-FyIUxnpMuHXFFhS68JEAYyiGcK5QXYsKm490utF_7KvZ22-7D8F-0AhEVCCX4oG5G5UIbY6i87UL9SeFgEezfBlba4waDvR1tdHVPfd02_-BfMA5Y9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111703732</pqid></control><display><type>article</type><title>Analysis on the shape of α-Sn CQDs</title><source>Alma/SFX Local Collection</source><creator>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</creator><creatorcontrib>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</creatorcontrib><description>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate
α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of
α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0219505</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorptivity ; Bulk density ; Cost analysis ; Density functional theory ; Energy gap ; Energy levels ; Infrared analysis ; Infrared imaging ; Mercury tellurides ; Nanoparticles ; Performance evaluation ; Quantum dots ; Shape effects ; Spherical shells</subject><ispartof>Journal of applied physics, 2024-10, Vol.136 (13)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</cites><orcidid>0000-0002-8492-2090 ; 0000-0001-9792-3984 ; 0000-0001-6915-7899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kandegedara, R. M. E. B.</creatorcontrib><creatorcontrib>Krishnamurthy, Srini</creatorcontrib><creatorcontrib>Grein, Christoph</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><title>Analysis on the shape of α-Sn CQDs</title><title>Journal of applied physics</title><description>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate
α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of
α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</description><subject>Absorptivity</subject><subject>Bulk density</subject><subject>Cost analysis</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Mercury tellurides</subject><subject>Nanoparticles</subject><subject>Performance evaluation</subject><subject>Quantum dots</subject><subject>Shape effects</subject><subject>Spherical shells</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFIzVhW8Q6Eoh9d6ZTmZmWWr9gYKIuh5uJhmaUpM4ky76WL6Iz2QkXbs6cPi4XA5j1wgzhFzcyRlwNBLkCUsQtMmUlHDKEhjqTBtlztlFjFsARC1MwqaLhnaHWMe0bdJ-U6VxQ12Vtj79-c7emnT5eh8v2ZmnXayujjlhHw-r9-VTtn55fF4u1plDzfuspLlG7UlxQ8JQPoe8FLIqHM-FyIUxnpMuHXFFhS68JEAYyiGcK5QXYsKm490utF_7KvZ22-7D8F-0AhEVCCX4oG5G5UIbY6i87UL9SeFgEezfBlba4waDvR1tdHVPfd02_-BfMA5Y9w</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Kandegedara, R. M. E. B.</creator><creator>Krishnamurthy, Srini</creator><creator>Grein, Christoph</creator><creator>Sivananthan, Sivalingam</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8492-2090</orcidid><orcidid>https://orcid.org/0000-0001-9792-3984</orcidid><orcidid>https://orcid.org/0000-0001-6915-7899</orcidid></search><sort><creationdate>20241007</creationdate><title>Analysis on the shape of α-Sn CQDs</title><author>Kandegedara, R. M. E. B. ; Krishnamurthy, Srini ; Grein, Christoph ; Sivananthan, Sivalingam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-da4818fa729a39a6406d35ebc26336399f2a8dca27ab8bf5a01099fa01ccb7f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Bulk density</topic><topic>Cost analysis</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Mercury tellurides</topic><topic>Nanoparticles</topic><topic>Performance evaluation</topic><topic>Quantum dots</topic><topic>Shape effects</topic><topic>Spherical shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandegedara, R. M. E. B.</creatorcontrib><creatorcontrib>Krishnamurthy, Srini</creatorcontrib><creatorcontrib>Grein, Christoph</creatorcontrib><creatorcontrib>Sivananthan, Sivalingam</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandegedara, R. M. E. B.</au><au>Krishnamurthy, Srini</au><au>Grein, Christoph</au><au>Sivananthan, Sivalingam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on the shape of α-Sn CQDs</atitle><jtitle>Journal of applied physics</jtitle><date>2024-10-07</date><risdate>2024</risdate><volume>136</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In the search for materials alternate to bulk HgCdTe for high performance infrared imaging applications, colloidal quantum dots (CQDs), particularly HgTe CQDs, have gained traction owing to acceptable detector performance with easy preparation and low cost. In this article, we evaluate
α-Sn CQDs, an environmentally less reactive and less toxic alternative to HgTe, for infrared sensing applications. Ab initio density functional theory calculations are used to study the shape-dependent stability, electronic bandgap, and absorption coefficient of
α-Sn CQD nanoparticles (NPs). We consider three possible CQD shape constructions—Wulff, shell-by-shell, and spherical. The CQD of Wulff construction is predicted to be the most stable. However, we find that the size, not the shape, of the NP has a strong effect on the bandgap and absorption coefficient. Consequently, a sharp absorption edge is expected even in an ensemble of CQDs with different shapes. Importantly, the shape determines the position of the band edges with respect to vacuum, and thus offers a possibility of choosing the shape to improve alignment with the energy levels of ligands to enable efficient drift transport, instead of a slower and less efficient hopping transport.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0219505</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8492-2090</orcidid><orcidid>https://orcid.org/0000-0001-9792-3984</orcidid><orcidid>https://orcid.org/0000-0001-6915-7899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-10, Vol.136 (13) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_3111703732 |
source | Alma/SFX Local Collection |
subjects | Absorptivity Bulk density Cost analysis Density functional theory Energy gap Energy levels Infrared analysis Infrared imaging Mercury tellurides Nanoparticles Performance evaluation Quantum dots Shape effects Spherical shells |
title | Analysis on the shape of α-Sn CQDs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20the%20shape%20of%20%CE%B1-Sn%20CQDs&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kandegedara,%20R.%20M.%20E.%20B.&rft.date=2024-10-07&rft.volume=136&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0219505&rft_dat=%3Cproquest_cross%3E3111703732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111703732&rft_id=info:pmid/&rfr_iscdi=true |