Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis
The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2024-10, Vol.46 (14), p.2795-2803 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2803 |
---|---|
container_issue | 14 |
container_start_page | 2795 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 46 |
creator | Hui, Yicong Zhang, Yanchao Tang, Jie Li, Zhe Chen, Runlin Cui, Yahui |
description | The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm. |
doi_str_mv | 10.1177/01423312241265536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111679978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312241265536</sage_id><sourcerecordid>3111679978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcJk2apQy-YMCNrkvSJp0OaTPmsdBfb8sILsTVPXC-c-AehK6B3AIIcUeAlZRCWTIoeVVRfoJWwIQoCOXyFK0Wv1iAc3QR454QwhhnKzRtXI7JhGHqC62i6XAwfXYqDF-z9iHtfO8n5fCoUrubKXzIIeYhYeV6H4a0G7H1AQfv3OIaZ0YzJayNWjqxVdkl3A2qn3wc4iU6s8pFc_Vz1-j98eFt81xsX59eNvfbogXJUmFaaxmApratuTa61loZXVZckpqA6qSqmOhIKXipKetozRQjsuZQC1t1ktE1ujn2HoL_yCamZu9zmP-IDQUALqQU9UzBkWqDjzEY2xzCMKrw2QBpllmbP7POmdtjJqre_Lb-H_gGudx5kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111679978</pqid></control><display><type>article</type><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><source>SAGE Complete A-Z List</source><creator>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</creator><creatorcontrib>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</creatorcontrib><description>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241265536</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Clustering ; Defects ; Fault diagnosis ; Matched pursuit ; Matching ; Regularization ; Roller bearings</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-10, Vol.46 (14), p.2795-2803</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</cites><orcidid>0009-0003-6295-2250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312241265536$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312241265536$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Hui, Yicong</creatorcontrib><creatorcontrib>Zhang, Yanchao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Chen, Runlin</creatorcontrib><creatorcontrib>Cui, Yahui</creatorcontrib><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><title>Transactions of the Institute of Measurement and Control</title><description>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Defects</subject><subject>Fault diagnosis</subject><subject>Matched pursuit</subject><subject>Matching</subject><subject>Regularization</subject><subject>Roller bearings</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcJk2apQy-YMCNrkvSJp0OaTPmsdBfb8sILsTVPXC-c-AehK6B3AIIcUeAlZRCWTIoeVVRfoJWwIQoCOXyFK0Wv1iAc3QR454QwhhnKzRtXI7JhGHqC62i6XAwfXYqDF-z9iHtfO8n5fCoUrubKXzIIeYhYeV6H4a0G7H1AQfv3OIaZ0YzJayNWjqxVdkl3A2qn3wc4iU6s8pFc_Vz1-j98eFt81xsX59eNvfbogXJUmFaaxmApratuTa61loZXVZckpqA6qSqmOhIKXipKetozRQjsuZQC1t1ktE1ujn2HoL_yCamZu9zmP-IDQUALqQU9UzBkWqDjzEY2xzCMKrw2QBpllmbP7POmdtjJqre_Lb-H_gGudx5kA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hui, Yicong</creator><creator>Zhang, Yanchao</creator><creator>Tang, Jie</creator><creator>Li, Zhe</creator><creator>Chen, Runlin</creator><creator>Cui, Yahui</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-6295-2250</orcidid></search><sort><creationdate>20241001</creationdate><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><author>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Defects</topic><topic>Fault diagnosis</topic><topic>Matched pursuit</topic><topic>Matching</topic><topic>Regularization</topic><topic>Roller bearings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Yicong</creatorcontrib><creatorcontrib>Zhang, Yanchao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Chen, Runlin</creatorcontrib><creatorcontrib>Cui, Yahui</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Yicong</au><au>Zhang, Yanchao</au><au>Tang, Jie</au><au>Li, Zhe</au><au>Chen, Runlin</au><au>Cui, Yahui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>46</volume><issue>14</issue><spage>2795</spage><epage>2803</epage><pages>2795-2803</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312241265536</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0003-6295-2250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2024-10, Vol.46 (14), p.2795-2803 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_3111679978 |
source | SAGE Complete A-Z List |
subjects | Algorithms Clustering Defects Fault diagnosis Matched pursuit Matching Regularization Roller bearings |
title | Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering-based%20regularized%20orthogonal%20matching%20pursuit%20algorithm%20for%20rolling%20element%20bearing%20fault%20diagnosis&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Hui,%20Yicong&rft.date=2024-10-01&rft.volume=46&rft.issue=14&rft.spage=2795&rft.epage=2803&rft.pages=2795-2803&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241265536&rft_dat=%3Cproquest_cross%3E3111679978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111679978&rft_id=info:pmid/&rft_sage_id=10.1177_01423312241265536&rfr_iscdi=true |