Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis

The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2024-10, Vol.46 (14), p.2795-2803
Hauptverfasser: Hui, Yicong, Zhang, Yanchao, Tang, Jie, Li, Zhe, Chen, Runlin, Cui, Yahui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2803
container_issue 14
container_start_page 2795
container_title Transactions of the Institute of Measurement and Control
container_volume 46
creator Hui, Yicong
Zhang, Yanchao
Tang, Jie
Li, Zhe
Chen, Runlin
Cui, Yahui
description The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.
doi_str_mv 10.1177/01423312241265536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111679978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312241265536</sage_id><sourcerecordid>3111679978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcJk2apQy-YMCNrkvSJp0OaTPmsdBfb8sILsTVPXC-c-AehK6B3AIIcUeAlZRCWTIoeVVRfoJWwIQoCOXyFK0Wv1iAc3QR454QwhhnKzRtXI7JhGHqC62i6XAwfXYqDF-z9iHtfO8n5fCoUrubKXzIIeYhYeV6H4a0G7H1AQfv3OIaZ0YzJayNWjqxVdkl3A2qn3wc4iU6s8pFc_Vz1-j98eFt81xsX59eNvfbogXJUmFaaxmApratuTa61loZXVZckpqA6qSqmOhIKXipKetozRQjsuZQC1t1ktE1ujn2HoL_yCamZu9zmP-IDQUALqQU9UzBkWqDjzEY2xzCMKrw2QBpllmbP7POmdtjJqre_Lb-H_gGudx5kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111679978</pqid></control><display><type>article</type><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><source>SAGE Complete A-Z List</source><creator>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</creator><creatorcontrib>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</creatorcontrib><description>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241265536</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Clustering ; Defects ; Fault diagnosis ; Matched pursuit ; Matching ; Regularization ; Roller bearings</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-10, Vol.46 (14), p.2795-2803</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</cites><orcidid>0009-0003-6295-2250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312241265536$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312241265536$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Hui, Yicong</creatorcontrib><creatorcontrib>Zhang, Yanchao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Chen, Runlin</creatorcontrib><creatorcontrib>Cui, Yahui</creatorcontrib><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><title>Transactions of the Institute of Measurement and Control</title><description>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Defects</subject><subject>Fault diagnosis</subject><subject>Matched pursuit</subject><subject>Matching</subject><subject>Regularization</subject><subject>Roller bearings</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcJk2apQy-YMCNrkvSJp0OaTPmsdBfb8sILsTVPXC-c-AehK6B3AIIcUeAlZRCWTIoeVVRfoJWwIQoCOXyFK0Wv1iAc3QR454QwhhnKzRtXI7JhGHqC62i6XAwfXYqDF-z9iHtfO8n5fCoUrubKXzIIeYhYeV6H4a0G7H1AQfv3OIaZ0YzJayNWjqxVdkl3A2qn3wc4iU6s8pFc_Vz1-j98eFt81xsX59eNvfbogXJUmFaaxmApratuTa61loZXVZckpqA6qSqmOhIKXipKetozRQjsuZQC1t1ktE1ujn2HoL_yCamZu9zmP-IDQUALqQU9UzBkWqDjzEY2xzCMKrw2QBpllmbP7POmdtjJqre_Lb-H_gGudx5kA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Hui, Yicong</creator><creator>Zhang, Yanchao</creator><creator>Tang, Jie</creator><creator>Li, Zhe</creator><creator>Chen, Runlin</creator><creator>Cui, Yahui</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-6295-2250</orcidid></search><sort><creationdate>20241001</creationdate><title>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</title><author>Hui, Yicong ; Zhang, Yanchao ; Tang, Jie ; Li, Zhe ; Chen, Runlin ; Cui, Yahui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-ecff411b3fc86beb8bbaeb25690801ad9a547d02762b34d384a40986187f5d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Defects</topic><topic>Fault diagnosis</topic><topic>Matched pursuit</topic><topic>Matching</topic><topic>Regularization</topic><topic>Roller bearings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Yicong</creatorcontrib><creatorcontrib>Zhang, Yanchao</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Chen, Runlin</creatorcontrib><creatorcontrib>Cui, Yahui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Yicong</au><au>Zhang, Yanchao</au><au>Tang, Jie</au><au>Li, Zhe</au><au>Chen, Runlin</au><au>Cui, Yahui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>46</volume><issue>14</issue><spage>2795</spage><epage>2803</epage><pages>2795-2803</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>The sparse representation, which is based on the orthogonal matching pursuit (OMP) algorithm, is a useful technique for identifying defect characteristics in rolling element bearings. However, OMP is easily influenced by noise interference and is prone to choosing irrelevant atoms during the sparse decomposition process, resulting in a reduction in reconstruction accuracy. A clustering-based regularized orthogonal matching pursuit (CROMP) algorithm is proposed for bearing fault diagnosis. The clustering technique can successfully eliminate redundant atoms from the dictionary, improving the system’s stability and performance, while regularization can enhance the program’s capacity to recover sparse signals. The suggested technique may successfully recover transient signals from loud noise, according to simulation simulations. The approach performs well in extracting notable fault impacts, according to actual testing. The suggested approach takes less time to run and extracts early defect information more effectively than the OMP algorithm.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312241265536</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0003-6295-2250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2024-10, Vol.46 (14), p.2795-2803
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_3111679978
source SAGE Complete A-Z List
subjects Algorithms
Clustering
Defects
Fault diagnosis
Matched pursuit
Matching
Regularization
Roller bearings
title Clustering-based regularized orthogonal matching pursuit algorithm for rolling element bearing fault diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering-based%20regularized%20orthogonal%20matching%20pursuit%20algorithm%20for%20rolling%20element%20bearing%20fault%20diagnosis&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Hui,%20Yicong&rft.date=2024-10-01&rft.volume=46&rft.issue=14&rft.spage=2795&rft.epage=2803&rft.pages=2795-2803&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241265536&rft_dat=%3Cproquest_cross%3E3111679978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111679978&rft_id=info:pmid/&rft_sage_id=10.1177_01423312241265536&rfr_iscdi=true