NORMAL BASES FOR FUNCTION FIELDS
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-08, Vol.110 (1), p.44-55 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 110 |
creator | HAMAHATA, YOSHINORI |
description | In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields. |
doi_str_mv | 10.1017/S0004972724000339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111498343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972724000339</cupid><sourcerecordid>3111498343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</originalsourceid><addsrcrecordid>eNp1UE1Pg0AQ3RhNxOoP8EbiGZ1ldln2WBGUBCEp7XkDy2LaWKlLe_Dfd0mbeDCeZibva_IIuafwSIGKpxoAmBShCJnbEOUF8ajgPKAR4iXxJjiY8GtyM44bd3Eexh7xy2rxPi_853md1n5WLfxsVSbLvCr9LE-Ll_qWXPXN52juznNGVlm6TN6ConrNk3kR6DCS-yDiUgtu-ha07KKuFyIGZkAwjhBL1sUoewZCowYMmXTvtG1koBeMxo7T4Iw8nHx3dvg-mHGvNsPBfrlIhZRSJmNk6Fj0xNJ2GEdrerWz621jfxQFNRWh_hThNHjWNNvWrrsP82v9v-oIIm1Yqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111498343</pqid></control><display><type>article</type><title>NORMAL BASES FOR FUNCTION FIELDS</title><source>Cambridge University Press Journals Complete</source><creator>HAMAHATA, YOSHINORI</creator><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><description>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972724000339</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Codes</subject><ispartof>Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.44-55</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</cites><orcidid>0000-0003-1849-0725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972724000339/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><title>NORMAL BASES FOR FUNCTION FIELDS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</description><subject>Codes</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Pg0AQ3RhNxOoP8EbiGZ1ldln2WBGUBCEp7XkDy2LaWKlLe_Dfd0mbeDCeZibva_IIuafwSIGKpxoAmBShCJnbEOUF8ajgPKAR4iXxJjiY8GtyM44bd3Eexh7xy2rxPi_853md1n5WLfxsVSbLvCr9LE-Ll_qWXPXN52juznNGVlm6TN6ConrNk3kR6DCS-yDiUgtu-ha07KKuFyIGZkAwjhBL1sUoewZCowYMmXTvtG1koBeMxo7T4Iw8nHx3dvg-mHGvNsPBfrlIhZRSJmNk6Fj0xNJ2GEdrerWz621jfxQFNRWh_hThNHjWNNvWrrsP82v9v-oIIm1Yqg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>HAMAHATA, YOSHINORI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></search><sort><creationdate>20240801</creationdate><title>NORMAL BASES FOR FUNCTION FIELDS</title><author>HAMAHATA, YOSHINORI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMAHATA, YOSHINORI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NORMAL BASES FOR FUNCTION FIELDS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>44</spage><epage>55</epage><pages>44-55</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972724000339</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.44-55 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_3111498343 |
source | Cambridge University Press Journals Complete |
subjects | Codes |
title | NORMAL BASES FOR FUNCTION FIELDS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NORMAL%20BASES%20FOR%20FUNCTION%20FIELDS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=HAMAHATA,%20YOSHINORI&rft.date=2024-08-01&rft.volume=110&rft.issue=1&rft.spage=44&rft.epage=55&rft.pages=44-55&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972724000339&rft_dat=%3Cproquest_cross%3E3111498343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111498343&rft_id=info:pmid/&rft_cupid=10_1017_S0004972724000339&rfr_iscdi=true |