NORMAL BASES FOR FUNCTION FIELDS

In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2024-08, Vol.110 (1), p.44-55
1. Verfasser: HAMAHATA, YOSHINORI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 44
container_title Bulletin of the Australian Mathematical Society
container_volume 110
creator HAMAHATA, YOSHINORI
description In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
doi_str_mv 10.1017/S0004972724000339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111498343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972724000339</cupid><sourcerecordid>3111498343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</originalsourceid><addsrcrecordid>eNp1UE1Pg0AQ3RhNxOoP8EbiGZ1ldln2WBGUBCEp7XkDy2LaWKlLe_Dfd0mbeDCeZibva_IIuafwSIGKpxoAmBShCJnbEOUF8ajgPKAR4iXxJjiY8GtyM44bd3Eexh7xy2rxPi_853md1n5WLfxsVSbLvCr9LE-Ll_qWXPXN52juznNGVlm6TN6ConrNk3kR6DCS-yDiUgtu-ha07KKuFyIGZkAwjhBL1sUoewZCowYMmXTvtG1koBeMxo7T4Iw8nHx3dvg-mHGvNsPBfrlIhZRSJmNk6Fj0xNJ2GEdrerWz621jfxQFNRWh_hThNHjWNNvWrrsP82v9v-oIIm1Yqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111498343</pqid></control><display><type>article</type><title>NORMAL BASES FOR FUNCTION FIELDS</title><source>Cambridge University Press Journals Complete</source><creator>HAMAHATA, YOSHINORI</creator><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><description>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972724000339</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Codes</subject><ispartof>Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.44-55</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</cites><orcidid>0000-0003-1849-0725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972724000339/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><title>NORMAL BASES FOR FUNCTION FIELDS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</description><subject>Codes</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Pg0AQ3RhNxOoP8EbiGZ1ldln2WBGUBCEp7XkDy2LaWKlLe_Dfd0mbeDCeZibva_IIuafwSIGKpxoAmBShCJnbEOUF8ajgPKAR4iXxJjiY8GtyM44bd3Eexh7xy2rxPi_853md1n5WLfxsVSbLvCr9LE-Ll_qWXPXN52juznNGVlm6TN6ConrNk3kR6DCS-yDiUgtu-ha07KKuFyIGZkAwjhBL1sUoewZCowYMmXTvtG1koBeMxo7T4Iw8nHx3dvg-mHGvNsPBfrlIhZRSJmNk6Fj0xNJ2GEdrerWz621jfxQFNRWh_hThNHjWNNvWrrsP82v9v-oIIm1Yqg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>HAMAHATA, YOSHINORI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></search><sort><creationdate>20240801</creationdate><title>NORMAL BASES FOR FUNCTION FIELDS</title><author>HAMAHATA, YOSHINORI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-659c75efb0c9d6df77804e074530894d839f407c3c03249000bb6e0f7418453a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMAHATA, YOSHINORI</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMAHATA, YOSHINORI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NORMAL BASES FOR FUNCTION FIELDS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>44</spage><epage>55</epage><pages>44-55</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972724000339</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2024-08, Vol.110 (1), p.44-55
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_3111498343
source Cambridge University Press Journals Complete
subjects Codes
title NORMAL BASES FOR FUNCTION FIELDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NORMAL%20BASES%20FOR%20FUNCTION%20FIELDS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=HAMAHATA,%20YOSHINORI&rft.date=2024-08-01&rft.volume=110&rft.issue=1&rft.spage=44&rft.epage=55&rft.pages=44-55&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972724000339&rft_dat=%3Cproquest_cross%3E3111498343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111498343&rft_id=info:pmid/&rft_cupid=10_1017_S0004972724000339&rfr_iscdi=true