Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites
Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and f...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2024-11, Vol.141 (42), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 141 |
creator | Rani, Pooja Singh, Indrajeet Khare, Deepak Balani, Kantesh |
description | Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners.
The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites. |
doi_str_mv | 10.1002/app.56096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111433552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111433552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1EJZbCgTewxAmJtHZiO8mxWkFBqkQP9BzZzrjrymsb21G1PfEIfZY-Ek9SbwNHTvP_mm9GmvkR-kDJGSWkPZcxnnFBRvEKbSgZ-4aJdniNNrVHm2Ec-Rv0Nuc7QijlRGzQ01YmFTz20oeyKMBm8brY4KWzD_IocF5iDKlkvAe9k95q6T7jkqwKLtyuTvoZK_vP4wQ5Bp8BB4NNAniAP78f52RhxosrSVa3s7c7vA8O9OJkwvdQfcExuAOU3cGBP44omeFlcdU67GPItkB-h06MdBne_62n6Obrl5_bb83Vj8vv24urRtOhFw2DemRnuGA9A6OYGJTkumVsZKD1OM56UIb1ZlZs6FsxM9bqgQvZEcJ1J1l3ij6ue2MKvxbIZboLS6qPyVNHKWVdx3lbqU8rpVPIOYGZYrJ7mQ4TJdMxkqlGMr1EUtnzlb23Dg7_B6eL6-t14hnDQ5bk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111433552</pqid></control><display><type>article</type><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</creator><creatorcontrib>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</creatorcontrib><description>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners.
The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.56096</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acetabular components ; Apatite ; Carbon ; carbon nanotube ; Carbon nanotubes ; Centrifugal compressors ; Composite materials ; Densification ; Elastic properties ; Electrons ; functionalization ; Hardness ; Linings ; Mechanical properties ; Modulus of elasticity ; Molecular weight ; Photoelectrons ; Polyethylene ; Pressure molding ; Tribology ; Ultra high molecular weight polyethylene ; wear ; Wear particles ; Wear rate ; Wear resistance</subject><ispartof>Journal of applied polymer science, 2024-11, Vol.141 (42), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</cites><orcidid>0000-0003-0619-9164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.56096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.56096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rani, Pooja</creatorcontrib><creatorcontrib>Singh, Indrajeet</creatorcontrib><creatorcontrib>Khare, Deepak</creatorcontrib><creatorcontrib>Balani, Kantesh</creatorcontrib><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><title>Journal of applied polymer science</title><description>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners.
The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</description><subject>Acetabular components</subject><subject>Apatite</subject><subject>Carbon</subject><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Centrifugal compressors</subject><subject>Composite materials</subject><subject>Densification</subject><subject>Elastic properties</subject><subject>Electrons</subject><subject>functionalization</subject><subject>Hardness</subject><subject>Linings</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular weight</subject><subject>Photoelectrons</subject><subject>Polyethylene</subject><subject>Pressure molding</subject><subject>Tribology</subject><subject>Ultra high molecular weight polyethylene</subject><subject>wear</subject><subject>Wear particles</subject><subject>Wear rate</subject><subject>Wear resistance</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1EJZbCgTewxAmJtHZiO8mxWkFBqkQP9BzZzrjrymsb21G1PfEIfZY-Ek9SbwNHTvP_mm9GmvkR-kDJGSWkPZcxnnFBRvEKbSgZ-4aJdniNNrVHm2Ec-Rv0Nuc7QijlRGzQ01YmFTz20oeyKMBm8brY4KWzD_IocF5iDKlkvAe9k95q6T7jkqwKLtyuTvoZK_vP4wQ5Bp8BB4NNAniAP78f52RhxosrSVa3s7c7vA8O9OJkwvdQfcExuAOU3cGBP44omeFlcdU67GPItkB-h06MdBne_62n6Obrl5_bb83Vj8vv24urRtOhFw2DemRnuGA9A6OYGJTkumVsZKD1OM56UIb1ZlZs6FsxM9bqgQvZEcJ1J1l3ij6ue2MKvxbIZboLS6qPyVNHKWVdx3lbqU8rpVPIOYGZYrJ7mQ4TJdMxkqlGMr1EUtnzlb23Dg7_B6eL6-t14hnDQ5bk</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Rani, Pooja</creator><creator>Singh, Indrajeet</creator><creator>Khare, Deepak</creator><creator>Balani, Kantesh</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0619-9164</orcidid></search><sort><creationdate>20241110</creationdate><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><author>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetabular components</topic><topic>Apatite</topic><topic>Carbon</topic><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Centrifugal compressors</topic><topic>Composite materials</topic><topic>Densification</topic><topic>Elastic properties</topic><topic>Electrons</topic><topic>functionalization</topic><topic>Hardness</topic><topic>Linings</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular weight</topic><topic>Photoelectrons</topic><topic>Polyethylene</topic><topic>Pressure molding</topic><topic>Tribology</topic><topic>Ultra high molecular weight polyethylene</topic><topic>wear</topic><topic>Wear particles</topic><topic>Wear rate</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Pooja</creatorcontrib><creatorcontrib>Singh, Indrajeet</creatorcontrib><creatorcontrib>Khare, Deepak</creatorcontrib><creatorcontrib>Balani, Kantesh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Pooja</au><au>Singh, Indrajeet</au><au>Khare, Deepak</au><au>Balani, Kantesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-11-10</date><risdate>2024</risdate><volume>141</volume><issue>42</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners.
The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.56096</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0619-9164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2024-11, Vol.141 (42), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_3111433552 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetabular components Apatite Carbon carbon nanotube Carbon nanotubes Centrifugal compressors Composite materials Densification Elastic properties Electrons functionalization Hardness Linings Mechanical properties Modulus of elasticity Molecular weight Photoelectrons Polyethylene Pressure molding Tribology Ultra high molecular weight polyethylene wear Wear particles Wear rate Wear resistance |
title | Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20functionalization%20supports%20mechanical,%20tribological,%20and%20biological%20response%20of%20freeze%E2%80%90dried%20ultra%E2%80%90high%20molecular%20weight%20polyethylene%E2%80%90based%20bio%E2%80%90composites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Rani,%20Pooja&rft.date=2024-11-10&rft.volume=141&rft.issue=42&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.56096&rft_dat=%3Cproquest_cross%3E3111433552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111433552&rft_id=info:pmid/&rfr_iscdi=true |