Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites

Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2024-11, Vol.141 (42), p.n/a
Hauptverfasser: Rani, Pooja, Singh, Indrajeet, Khare, Deepak, Balani, Kantesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Journal of applied polymer science
container_volume 141
creator Rani, Pooja
Singh, Indrajeet
Khare, Deepak
Balani, Kantesh
description Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners. The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.
doi_str_mv 10.1002/app.56096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111433552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111433552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1EJZbCgTewxAmJtHZiO8mxWkFBqkQP9BzZzrjrymsb21G1PfEIfZY-Ek9SbwNHTvP_mm9GmvkR-kDJGSWkPZcxnnFBRvEKbSgZ-4aJdniNNrVHm2Ec-Rv0Nuc7QijlRGzQ01YmFTz20oeyKMBm8brY4KWzD_IocF5iDKlkvAe9k95q6T7jkqwKLtyuTvoZK_vP4wQ5Bp8BB4NNAniAP78f52RhxosrSVa3s7c7vA8O9OJkwvdQfcExuAOU3cGBP44omeFlcdU67GPItkB-h06MdBne_62n6Obrl5_bb83Vj8vv24urRtOhFw2DemRnuGA9A6OYGJTkumVsZKD1OM56UIb1ZlZs6FsxM9bqgQvZEcJ1J1l3ij6ue2MKvxbIZboLS6qPyVNHKWVdx3lbqU8rpVPIOYGZYrJ7mQ4TJdMxkqlGMr1EUtnzlb23Dg7_B6eL6-t14hnDQ5bk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111433552</pqid></control><display><type>article</type><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</creator><creatorcontrib>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</creatorcontrib><description>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners. The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.56096</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acetabular components ; Apatite ; Carbon ; carbon nanotube ; Carbon nanotubes ; Centrifugal compressors ; Composite materials ; Densification ; Elastic properties ; Electrons ; functionalization ; Hardness ; Linings ; Mechanical properties ; Modulus of elasticity ; Molecular weight ; Photoelectrons ; Polyethylene ; Pressure molding ; Tribology ; Ultra high molecular weight polyethylene ; wear ; Wear particles ; Wear rate ; Wear resistance</subject><ispartof>Journal of applied polymer science, 2024-11, Vol.141 (42), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</cites><orcidid>0000-0003-0619-9164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.56096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.56096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rani, Pooja</creatorcontrib><creatorcontrib>Singh, Indrajeet</creatorcontrib><creatorcontrib>Khare, Deepak</creatorcontrib><creatorcontrib>Balani, Kantesh</creatorcontrib><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><title>Journal of applied polymer science</title><description>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners. The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</description><subject>Acetabular components</subject><subject>Apatite</subject><subject>Carbon</subject><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Centrifugal compressors</subject><subject>Composite materials</subject><subject>Densification</subject><subject>Elastic properties</subject><subject>Electrons</subject><subject>functionalization</subject><subject>Hardness</subject><subject>Linings</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular weight</subject><subject>Photoelectrons</subject><subject>Polyethylene</subject><subject>Pressure molding</subject><subject>Tribology</subject><subject>Ultra high molecular weight polyethylene</subject><subject>wear</subject><subject>Wear particles</subject><subject>Wear rate</subject><subject>Wear resistance</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1EJZbCgTewxAmJtHZiO8mxWkFBqkQP9BzZzrjrymsb21G1PfEIfZY-Ek9SbwNHTvP_mm9GmvkR-kDJGSWkPZcxnnFBRvEKbSgZ-4aJdniNNrVHm2Ec-Rv0Nuc7QijlRGzQ01YmFTz20oeyKMBm8brY4KWzD_IocF5iDKlkvAe9k95q6T7jkqwKLtyuTvoZK_vP4wQ5Bp8BB4NNAniAP78f52RhxosrSVa3s7c7vA8O9OJkwvdQfcExuAOU3cGBP44omeFlcdU67GPItkB-h06MdBne_62n6Obrl5_bb83Vj8vv24urRtOhFw2DemRnuGA9A6OYGJTkumVsZKD1OM56UIb1ZlZs6FsxM9bqgQvZEcJ1J1l3ij6ue2MKvxbIZboLS6qPyVNHKWVdx3lbqU8rpVPIOYGZYrJ7mQ4TJdMxkqlGMr1EUtnzlb23Dg7_B6eL6-t14hnDQ5bk</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Rani, Pooja</creator><creator>Singh, Indrajeet</creator><creator>Khare, Deepak</creator><creator>Balani, Kantesh</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0619-9164</orcidid></search><sort><creationdate>20241110</creationdate><title>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</title><author>Rani, Pooja ; Singh, Indrajeet ; Khare, Deepak ; Balani, Kantesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1876-4e0013f56474efb468ba5c24494ecc99dc8bf47fdb48726d442c856a3005c3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetabular components</topic><topic>Apatite</topic><topic>Carbon</topic><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Centrifugal compressors</topic><topic>Composite materials</topic><topic>Densification</topic><topic>Elastic properties</topic><topic>Electrons</topic><topic>functionalization</topic><topic>Hardness</topic><topic>Linings</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular weight</topic><topic>Photoelectrons</topic><topic>Polyethylene</topic><topic>Pressure molding</topic><topic>Tribology</topic><topic>Ultra high molecular weight polyethylene</topic><topic>wear</topic><topic>Wear particles</topic><topic>Wear rate</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Pooja</creatorcontrib><creatorcontrib>Singh, Indrajeet</creatorcontrib><creatorcontrib>Khare, Deepak</creatorcontrib><creatorcontrib>Balani, Kantesh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Pooja</au><au>Singh, Indrajeet</au><au>Khare, Deepak</au><au>Balani, Kantesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-11-10</date><risdate>2024</risdate><volume>141</volume><issue>42</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Acetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners. The role of CNT functionalization on hardness, elastic modulus, fretting wear scar, contact angle, apatite formation, and cell proliferation of (a) UCNT and (b) UfCNT composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.56096</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0619-9164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2024-11, Vol.141 (42), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_3111433552
source Wiley Online Library Journals Frontfile Complete
subjects Acetabular components
Apatite
Carbon
carbon nanotube
Carbon nanotubes
Centrifugal compressors
Composite materials
Densification
Elastic properties
Electrons
functionalization
Hardness
Linings
Mechanical properties
Modulus of elasticity
Molecular weight
Photoelectrons
Polyethylene
Pressure molding
Tribology
Ultra high molecular weight polyethylene
wear
Wear particles
Wear rate
Wear resistance
title Carbon nanotube functionalization supports mechanical, tribological, and biological response of freeze‐dried ultra‐high molecular weight polyethylene‐based bio‐composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20functionalization%20supports%20mechanical,%20tribological,%20and%20biological%20response%20of%20freeze%E2%80%90dried%20ultra%E2%80%90high%20molecular%20weight%20polyethylene%E2%80%90based%20bio%E2%80%90composites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Rani,%20Pooja&rft.date=2024-11-10&rft.volume=141&rft.issue=42&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.56096&rft_dat=%3Cproquest_cross%3E3111433552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111433552&rft_id=info:pmid/&rfr_iscdi=true