In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells

Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (40), p.n/a
Hauptverfasser: Luo, Yao, Zhang, Dong, Liu, Tong, Chang, Xu, Wang, Jietao, Wang, Yao, Gu, Xiang‐Kui, Ding, Mingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 34
creator Luo, Yao
Zhang, Dong
Liu, Tong
Chang, Xu
Wang, Jietao
Wang, Yao
Gu, Xiang‐Kui
Ding, Mingyue
description Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability. The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.
doi_str_mv 10.1002/adfm.202403922
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111405292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111405292</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-a3e6a2496344bf44af70f877e77703d6691fd713d8b6064f0339a2b255ae95763</originalsourceid><addsrcrecordid>eNo9kE9LwzAAxYMoOKdXzwHPnfnXZD2Ouulgs-gceAupTSQja2rTzvXmR_Az-kncnOz03oPHg_cD4BqjAUaI3KrCrAcEEYZoQsgJ6GGOeUQRGZ4ePX49BxchrBDCQlDWA5tpCRe2aeF4G7xrG-tL6A18alWj61LVHRw55zv4qEpfqbqxb04HaHwN04z8fH2nGZy3TascTH250XXYDyyDLd_hs_7LudNw4Z0tYLa1hYapdi5cgjOjXNBX_9oHy8n4JX2IZtn9NB3NoopQSiJFNVeEJZwylhvGlBHIDIXQQghEC84TbAqBaTHMOeLMIEoTRXISx0onseC0D24Ou1XtP1odGrny7e6XC5JijBmKSUJ2reTQ-rROd7Kq7Xr3XGIk92DlHqw8gpWju8n8mOgvH7VvRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111405292</pqid></control><display><type>article</type><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</creator><creatorcontrib>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</creatorcontrib><description>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability. The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403922</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; CO2‐CO mutual conversion ; Cobalt ; Configuration management ; Copper ; Electrodes ; First principles ; Fuels ; in situ exsolution ; Interface stability ; Iron ; Kinetics ; medium‐entropy oxides ; Molecular dynamics ; Nanoalloys ; Nanoparticles ; Nickel ; Perovskites ; quaternary alloy ; Quaternary alloys ; Reaction kinetics ; reversible solid oxide cells ; Substrates</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7776-4178 ; 0000-0001-6537-7026 ; 0000-0001-8769-4153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202403922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202403922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Luo, Yao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wang, Jietao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Gu, Xiang‐Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><title>Advanced functional materials</title><description>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability. The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</description><subject>Carbon dioxide</subject><subject>CO2‐CO mutual conversion</subject><subject>Cobalt</subject><subject>Configuration management</subject><subject>Copper</subject><subject>Electrodes</subject><subject>First principles</subject><subject>Fuels</subject><subject>in situ exsolution</subject><subject>Interface stability</subject><subject>Iron</subject><subject>Kinetics</subject><subject>medium‐entropy oxides</subject><subject>Molecular dynamics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Perovskites</subject><subject>quaternary alloy</subject><subject>Quaternary alloys</subject><subject>Reaction kinetics</subject><subject>reversible solid oxide cells</subject><subject>Substrates</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LwzAAxYMoOKdXzwHPnfnXZD2Ouulgs-gceAupTSQja2rTzvXmR_Az-kncnOz03oPHg_cD4BqjAUaI3KrCrAcEEYZoQsgJ6GGOeUQRGZ4ePX49BxchrBDCQlDWA5tpCRe2aeF4G7xrG-tL6A18alWj61LVHRw55zv4qEpfqbqxb04HaHwN04z8fH2nGZy3TascTH250XXYDyyDLd_hs_7LudNw4Z0tYLa1hYapdi5cgjOjXNBX_9oHy8n4JX2IZtn9NB3NoopQSiJFNVeEJZwylhvGlBHIDIXQQghEC84TbAqBaTHMOeLMIEoTRXISx0onseC0D24Ou1XtP1odGrny7e6XC5JijBmKSUJ2reTQ-rROd7Kq7Xr3XGIk92DlHqw8gpWju8n8mOgvH7VvRg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Luo, Yao</creator><creator>Zhang, Dong</creator><creator>Liu, Tong</creator><creator>Chang, Xu</creator><creator>Wang, Jietao</creator><creator>Wang, Yao</creator><creator>Gu, Xiang‐Kui</creator><creator>Ding, Mingyue</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7776-4178</orcidid><orcidid>https://orcid.org/0000-0001-6537-7026</orcidid><orcidid>https://orcid.org/0000-0001-8769-4153</orcidid></search><sort><creationdate>20241001</creationdate><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><author>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-a3e6a2496344bf44af70f877e77703d6691fd713d8b6064f0339a2b255ae95763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>CO2‐CO mutual conversion</topic><topic>Cobalt</topic><topic>Configuration management</topic><topic>Copper</topic><topic>Electrodes</topic><topic>First principles</topic><topic>Fuels</topic><topic>in situ exsolution</topic><topic>Interface stability</topic><topic>Iron</topic><topic>Kinetics</topic><topic>medium‐entropy oxides</topic><topic>Molecular dynamics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Perovskites</topic><topic>quaternary alloy</topic><topic>Quaternary alloys</topic><topic>Reaction kinetics</topic><topic>reversible solid oxide cells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wang, Jietao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Gu, Xiang‐Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yao</au><au>Zhang, Dong</au><au>Liu, Tong</au><au>Chang, Xu</au><au>Wang, Jietao</au><au>Wang, Yao</au><au>Gu, Xiang‐Kui</au><au>Ding, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability. The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403922</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7776-4178</orcidid><orcidid>https://orcid.org/0000-0001-6537-7026</orcidid><orcidid>https://orcid.org/0000-0001-8769-4153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111405292
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
CO2‐CO mutual conversion
Cobalt
Configuration management
Copper
Electrodes
First principles
Fuels
in situ exsolution
Interface stability
Iron
Kinetics
medium‐entropy oxides
Molecular dynamics
Nanoalloys
Nanoparticles
Nickel
Perovskites
quaternary alloy
Quaternary alloys
Reaction kinetics
reversible solid oxide cells
Substrates
title In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Exsolution%20of%20Quaternary%20Alloy%20Nanoparticles%20for%20CO2%E2%80%90CO%20Mutual%20Conversion%20Using%20Reversible%20Solid%20Oxide%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Yao&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403922&rft_dat=%3Cproquest_wiley%3E3111405292%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111405292&rft_id=info:pmid/&rfr_iscdi=true