In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells
Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a la...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-10, Vol.34 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Luo, Yao Zhang, Dong Liu, Tong Chang, Xu Wang, Jietao Wang, Yao Gu, Xiang‐Kui Ding, Mingyue |
description | Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability.
The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle. |
doi_str_mv | 10.1002/adfm.202403922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111405292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111405292</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-a3e6a2496344bf44af70f877e77703d6691fd713d8b6064f0339a2b255ae95763</originalsourceid><addsrcrecordid>eNo9kE9LwzAAxYMoOKdXzwHPnfnXZD2Ouulgs-gceAupTSQja2rTzvXmR_Az-kncnOz03oPHg_cD4BqjAUaI3KrCrAcEEYZoQsgJ6GGOeUQRGZ4ePX49BxchrBDCQlDWA5tpCRe2aeF4G7xrG-tL6A18alWj61LVHRw55zv4qEpfqbqxb04HaHwN04z8fH2nGZy3TascTH250XXYDyyDLd_hs_7LudNw4Z0tYLa1hYapdi5cgjOjXNBX_9oHy8n4JX2IZtn9NB3NoopQSiJFNVeEJZwylhvGlBHIDIXQQghEC84TbAqBaTHMOeLMIEoTRXISx0onseC0D24Ou1XtP1odGrny7e6XC5JijBmKSUJ2reTQ-rROd7Kq7Xr3XGIk92DlHqw8gpWju8n8mOgvH7VvRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111405292</pqid></control><display><type>article</type><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</creator><creatorcontrib>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</creatorcontrib><description>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability.
The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403922</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; CO2‐CO mutual conversion ; Cobalt ; Configuration management ; Copper ; Electrodes ; First principles ; Fuels ; in situ exsolution ; Interface stability ; Iron ; Kinetics ; medium‐entropy oxides ; Molecular dynamics ; Nanoalloys ; Nanoparticles ; Nickel ; Perovskites ; quaternary alloy ; Quaternary alloys ; Reaction kinetics ; reversible solid oxide cells ; Substrates</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7776-4178 ; 0000-0001-6537-7026 ; 0000-0001-8769-4153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202403922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202403922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Luo, Yao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wang, Jietao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Gu, Xiang‐Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><title>Advanced functional materials</title><description>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability.
The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</description><subject>Carbon dioxide</subject><subject>CO2‐CO mutual conversion</subject><subject>Cobalt</subject><subject>Configuration management</subject><subject>Copper</subject><subject>Electrodes</subject><subject>First principles</subject><subject>Fuels</subject><subject>in situ exsolution</subject><subject>Interface stability</subject><subject>Iron</subject><subject>Kinetics</subject><subject>medium‐entropy oxides</subject><subject>Molecular dynamics</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Perovskites</subject><subject>quaternary alloy</subject><subject>Quaternary alloys</subject><subject>Reaction kinetics</subject><subject>reversible solid oxide cells</subject><subject>Substrates</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LwzAAxYMoOKdXzwHPnfnXZD2Ouulgs-gceAupTSQja2rTzvXmR_Az-kncnOz03oPHg_cD4BqjAUaI3KrCrAcEEYZoQsgJ6GGOeUQRGZ4ePX49BxchrBDCQlDWA5tpCRe2aeF4G7xrG-tL6A18alWj61LVHRw55zv4qEpfqbqxb04HaHwN04z8fH2nGZy3TascTH250XXYDyyDLd_hs_7LudNw4Z0tYLa1hYapdi5cgjOjXNBX_9oHy8n4JX2IZtn9NB3NoopQSiJFNVeEJZwylhvGlBHIDIXQQghEC84TbAqBaTHMOeLMIEoTRXISx0onseC0D24Ou1XtP1odGrny7e6XC5JijBmKSUJ2reTQ-rROd7Kq7Xr3XGIk92DlHqw8gpWju8n8mOgvH7VvRg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Luo, Yao</creator><creator>Zhang, Dong</creator><creator>Liu, Tong</creator><creator>Chang, Xu</creator><creator>Wang, Jietao</creator><creator>Wang, Yao</creator><creator>Gu, Xiang‐Kui</creator><creator>Ding, Mingyue</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7776-4178</orcidid><orcidid>https://orcid.org/0000-0001-6537-7026</orcidid><orcidid>https://orcid.org/0000-0001-8769-4153</orcidid></search><sort><creationdate>20241001</creationdate><title>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</title><author>Luo, Yao ; Zhang, Dong ; Liu, Tong ; Chang, Xu ; Wang, Jietao ; Wang, Yao ; Gu, Xiang‐Kui ; Ding, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-a3e6a2496344bf44af70f877e77703d6691fd713d8b6064f0339a2b255ae95763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>CO2‐CO mutual conversion</topic><topic>Cobalt</topic><topic>Configuration management</topic><topic>Copper</topic><topic>Electrodes</topic><topic>First principles</topic><topic>Fuels</topic><topic>in situ exsolution</topic><topic>Interface stability</topic><topic>Iron</topic><topic>Kinetics</topic><topic>medium‐entropy oxides</topic><topic>Molecular dynamics</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Perovskites</topic><topic>quaternary alloy</topic><topic>Quaternary alloys</topic><topic>Reaction kinetics</topic><topic>reversible solid oxide cells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wang, Jietao</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Gu, Xiang‐Kui</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yao</au><au>Zhang, Dong</au><au>Liu, Tong</au><au>Chang, Xu</au><au>Wang, Jietao</au><au>Wang, Yao</au><au>Gu, Xiang‐Kui</au><au>Ding, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Reversible solid oxide cell is a promising energy storage and conversion device for CO2‐CO mutual conversion, with simplified cell configuration and performance stability. One key technical challenge is the lack of catalytically active and carbon‐tolerant fuel electrodes. The other one is still a lack of the kinetics mechanism and the redox stability of the active interface. Herein, the findings of a fuel electrode composed of a Sr2Fe1.0Co0.2Ni0.2Cu0.2Mo0.4O6‐δ medium‐entropy perovskite matrix decorated with in situ exsolved Fe‐Co‐Ni‐Cu quaternary alloy nanoparticles (QA@SFO) are reported. Under a reducing atmosphere, the exsolution of the quaternary alloy is accompanied by a structural transformation from double perovskite to layered perovskite, forming an interface structure where alloy nanoparticles are strongly pinned to the substrate with abundant oxygen vacancies. Electrochemically, the highly active sites provided by the QA@SFO interface greatly enhance the kinetics of CO2‐CO mutual conversion and exhibit outstanding durability for over 300 h at 1.3 V and 800 °C. Moreover, first‐principles calculations and ab initio molecular dynamics simulations from the atomic scale further elucidate the impressive electrocatalytic activity and stability and reveal that Fe and Ni in exsolved nanoparticles enhance the electrocatalytic activity, and the strong binding of Co and Cu to the parent improves the interfacial stability.
The medium‐entropy perovskite oxides as the fuel electrode in situ exsolve the active metal cations and form quaternary alloy nanoparticles in the reduction atmosphere. The strong binding of nanoparticles to the parent with abundant oxygen vacancy provides a strong reactive interface for the efficient and durable CO2‐CO catalytic cycle.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403922</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7776-4178</orcidid><orcidid>https://orcid.org/0000-0001-6537-7026</orcidid><orcidid>https://orcid.org/0000-0001-8769-4153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-10, Vol.34 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3111405292 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide CO2‐CO mutual conversion Cobalt Configuration management Copper Electrodes First principles Fuels in situ exsolution Interface stability Iron Kinetics medium‐entropy oxides Molecular dynamics Nanoalloys Nanoparticles Nickel Perovskites quaternary alloy Quaternary alloys Reaction kinetics reversible solid oxide cells Substrates |
title | In Situ Exsolution of Quaternary Alloy Nanoparticles for CO2‐CO Mutual Conversion Using Reversible Solid Oxide Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Exsolution%20of%20Quaternary%20Alloy%20Nanoparticles%20for%20CO2%E2%80%90CO%20Mutual%20Conversion%20Using%20Reversible%20Solid%20Oxide%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Yao&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403922&rft_dat=%3Cproquest_wiley%3E3111405292%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111405292&rft_id=info:pmid/&rfr_iscdi=true |