Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR

Encapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (40), p.n/a
Hauptverfasser: Quílez‐Bermejo, Javier, Daouli, Ayoub, Dalí, Sergio García, Cui, Yingdan, Zitolo, Andrea, Castro‐Gutiérrez, Jimena, Emo, Mélanie, Izquierdo, Maria T., Mustain, William, Badawi, Michael, Celzard, Alain, Fierro, Vanessa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 34
creator Quílez‐Bermejo, Javier
Daouli, Ayoub
Dalí, Sergio García
Cui, Yingdan
Zitolo, Andrea
Castro‐Gutiérrez, Jimena
Emo, Mélanie
Izquierdo, Maria T.
Mustain, William
Badawi, Michael
Celzard, Alain
Fierro, Vanessa
description Encapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe3C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C1N1 material is used to synthesize N‐doped carbons with encapsulated Fe3C, significantly enhancing catalytic activity (EONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm−2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe3C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement. N‐doped carbon with encapsulated Fe3C nanoparticles within carbon layers shows high oxygen reduction activity and state‐of‐the‐art performance in fuel cell experiments. Encapsulation preserves the catalytic activity, and DFT simulations unveil electron transfer mechanisms from Fe3C cores to N active sites located in the outermost N‐doped carbon layer, boosting the electrocatalytic activity.
doi_str_mv 10.1002/adfm.202403810
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3111404629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111404629</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-f98bbb9904f68813f0e47d8dc04398285aa207c9d1a7d19f8706b68602af91263</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFavnhc8p87sxs3usaStCtVCreBt2SS72JJk4yZBevMn-Bv9JaYoPc0b5s178BFyjTBBAHZrCldNGLAYuEQ4ISMUKCIOTJ4eNb6dk4u23QFgkvB4RMy8tHkXfE03wdSts4G64Cs6r3PTtH1pOlvQheUp7Tzt3i1d9Z0NlW87-vzz9T3zzXBPTciGhKXZH959oC99Y8N2EKv1-pKcOVO29up_jsnrYr5JH6Ll6v4xnS6jhnEOkVMyyzKlIHZCSuQObJwUssgh5koyeWcMgyRXBZqkQOVkAiITUgAzTiETfExu_nKb4D9623Z65_tQD5WaI2IMsWBqcKk_1-e2tHvdhG1lwl4j6ANDfWCojwz1dLZ4Om78F2EXZzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111404629</pqid></control><display><type>article</type><title>Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Quílez‐Bermejo, Javier ; Daouli, Ayoub ; Dalí, Sergio García ; Cui, Yingdan ; Zitolo, Andrea ; Castro‐Gutiérrez, Jimena ; Emo, Mélanie ; Izquierdo, Maria T. ; Mustain, William ; Badawi, Michael ; Celzard, Alain ; Fierro, Vanessa</creator><creatorcontrib>Quílez‐Bermejo, Javier ; Daouli, Ayoub ; Dalí, Sergio García ; Cui, Yingdan ; Zitolo, Andrea ; Castro‐Gutiérrez, Jimena ; Emo, Mélanie ; Izquierdo, Maria T. ; Mustain, William ; Badawi, Michael ; Celzard, Alain ; Fierro, Vanessa</creatorcontrib><description>Encapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe3C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C1N1 material is used to synthesize N‐doped carbons with encapsulated Fe3C, significantly enhancing catalytic activity (EONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm−2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe3C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement. N‐doped carbon with encapsulated Fe3C nanoparticles within carbon layers shows high oxygen reduction activity and state‐of‐the‐art performance in fuel cell experiments. Encapsulation preserves the catalytic activity, and DFT simulations unveil electron transfer mechanisms from Fe3C cores to N active sites located in the outermost N‐doped carbon layer, boosting the electrocatalytic activity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202403810</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; C1N1 ; Carbon ; Catalytic activity ; Cementite ; Chemical reduction ; Chemical synthesis ; Electron transfer ; Encapsulation ; encapsulation in N‐doped carbon ; Fe3C ; Fuel cells ; Iron carbides ; oxygen reduction reaction (ORR) ; Oxygen reduction reactions</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2408-2528 ; 0000-0002-3504-4180 ; 0000-0003-0073-9545 ; 0000-0002-2187-6699 ; 0000-0003-3599-6824 ; 0000-0002-4402-5467 ; 0000-0002-6319-2498 ; 0000-0003-2808-1036 ; 0000-0001-7081-3697 ; 0000-0002-0042-0430 ; 0000-0001-7804-6410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202403810$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202403810$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Quílez‐Bermejo, Javier</creatorcontrib><creatorcontrib>Daouli, Ayoub</creatorcontrib><creatorcontrib>Dalí, Sergio García</creatorcontrib><creatorcontrib>Cui, Yingdan</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Castro‐Gutiérrez, Jimena</creatorcontrib><creatorcontrib>Emo, Mélanie</creatorcontrib><creatorcontrib>Izquierdo, Maria T.</creatorcontrib><creatorcontrib>Mustain, William</creatorcontrib><creatorcontrib>Badawi, Michael</creatorcontrib><creatorcontrib>Celzard, Alain</creatorcontrib><creatorcontrib>Fierro, Vanessa</creatorcontrib><title>Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR</title><title>Advanced functional materials</title><description>Encapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe3C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C1N1 material is used to synthesize N‐doped carbons with encapsulated Fe3C, significantly enhancing catalytic activity (EONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm−2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe3C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement. N‐doped carbon with encapsulated Fe3C nanoparticles within carbon layers shows high oxygen reduction activity and state‐of‐the‐art performance in fuel cell experiments. Encapsulation preserves the catalytic activity, and DFT simulations unveil electron transfer mechanisms from Fe3C cores to N active sites located in the outermost N‐doped carbon layer, boosting the electrocatalytic activity.</description><subject>Anion exchanging</subject><subject>C1N1</subject><subject>Carbon</subject><subject>Catalytic activity</subject><subject>Cementite</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Electron transfer</subject><subject>Encapsulation</subject><subject>encapsulation in N‐doped carbon</subject><subject>Fe3C</subject><subject>Fuel cells</subject><subject>Iron carbides</subject><subject>oxygen reduction reaction (ORR)</subject><subject>Oxygen reduction reactions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFavnhc8p87sxs3usaStCtVCreBt2SS72JJk4yZBevMn-Bv9JaYoPc0b5s178BFyjTBBAHZrCldNGLAYuEQ4ISMUKCIOTJ4eNb6dk4u23QFgkvB4RMy8tHkXfE03wdSts4G64Cs6r3PTtH1pOlvQheUp7Tzt3i1d9Z0NlW87-vzz9T3zzXBPTciGhKXZH959oC99Y8N2EKv1-pKcOVO29up_jsnrYr5JH6Ll6v4xnS6jhnEOkVMyyzKlIHZCSuQObJwUssgh5koyeWcMgyRXBZqkQOVkAiITUgAzTiETfExu_nKb4D9623Z65_tQD5WaI2IMsWBqcKk_1-e2tHvdhG1lwl4j6ANDfWCojwz1dLZ4Om78F2EXZzo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Quílez‐Bermejo, Javier</creator><creator>Daouli, Ayoub</creator><creator>Dalí, Sergio García</creator><creator>Cui, Yingdan</creator><creator>Zitolo, Andrea</creator><creator>Castro‐Gutiérrez, Jimena</creator><creator>Emo, Mélanie</creator><creator>Izquierdo, Maria T.</creator><creator>Mustain, William</creator><creator>Badawi, Michael</creator><creator>Celzard, Alain</creator><creator>Fierro, Vanessa</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2408-2528</orcidid><orcidid>https://orcid.org/0000-0002-3504-4180</orcidid><orcidid>https://orcid.org/0000-0003-0073-9545</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0003-3599-6824</orcidid><orcidid>https://orcid.org/0000-0002-4402-5467</orcidid><orcidid>https://orcid.org/0000-0002-6319-2498</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid><orcidid>https://orcid.org/0000-0001-7081-3697</orcidid><orcidid>https://orcid.org/0000-0002-0042-0430</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid></search><sort><creationdate>20241001</creationdate><title>Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR</title><author>Quílez‐Bermejo, Javier ; Daouli, Ayoub ; Dalí, Sergio García ; Cui, Yingdan ; Zitolo, Andrea ; Castro‐Gutiérrez, Jimena ; Emo, Mélanie ; Izquierdo, Maria T. ; Mustain, William ; Badawi, Michael ; Celzard, Alain ; Fierro, Vanessa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-f98bbb9904f68813f0e47d8dc04398285aa207c9d1a7d19f8706b68602af91263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anion exchanging</topic><topic>C1N1</topic><topic>Carbon</topic><topic>Catalytic activity</topic><topic>Cementite</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Electron transfer</topic><topic>Encapsulation</topic><topic>encapsulation in N‐doped carbon</topic><topic>Fe3C</topic><topic>Fuel cells</topic><topic>Iron carbides</topic><topic>oxygen reduction reaction (ORR)</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quílez‐Bermejo, Javier</creatorcontrib><creatorcontrib>Daouli, Ayoub</creatorcontrib><creatorcontrib>Dalí, Sergio García</creatorcontrib><creatorcontrib>Cui, Yingdan</creatorcontrib><creatorcontrib>Zitolo, Andrea</creatorcontrib><creatorcontrib>Castro‐Gutiérrez, Jimena</creatorcontrib><creatorcontrib>Emo, Mélanie</creatorcontrib><creatorcontrib>Izquierdo, Maria T.</creatorcontrib><creatorcontrib>Mustain, William</creatorcontrib><creatorcontrib>Badawi, Michael</creatorcontrib><creatorcontrib>Celzard, Alain</creatorcontrib><creatorcontrib>Fierro, Vanessa</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quílez‐Bermejo, Javier</au><au>Daouli, Ayoub</au><au>Dalí, Sergio García</au><au>Cui, Yingdan</au><au>Zitolo, Andrea</au><au>Castro‐Gutiérrez, Jimena</au><au>Emo, Mélanie</au><au>Izquierdo, Maria T.</au><au>Mustain, William</au><au>Badawi, Michael</au><au>Celzard, Alain</au><au>Fierro, Vanessa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Encapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe3C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C1N1 material is used to synthesize N‐doped carbons with encapsulated Fe3C, significantly enhancing catalytic activity (EONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm−2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe3C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement. N‐doped carbon with encapsulated Fe3C nanoparticles within carbon layers shows high oxygen reduction activity and state‐of‐the‐art performance in fuel cell experiments. Encapsulation preserves the catalytic activity, and DFT simulations unveil electron transfer mechanisms from Fe3C cores to N active sites located in the outermost N‐doped carbon layer, boosting the electrocatalytic activity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202403810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2408-2528</orcidid><orcidid>https://orcid.org/0000-0002-3504-4180</orcidid><orcidid>https://orcid.org/0000-0003-0073-9545</orcidid><orcidid>https://orcid.org/0000-0002-2187-6699</orcidid><orcidid>https://orcid.org/0000-0003-3599-6824</orcidid><orcidid>https://orcid.org/0000-0002-4402-5467</orcidid><orcidid>https://orcid.org/0000-0002-6319-2498</orcidid><orcidid>https://orcid.org/0000-0003-2808-1036</orcidid><orcidid>https://orcid.org/0000-0001-7081-3697</orcidid><orcidid>https://orcid.org/0000-0002-0042-0430</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111404629
source Wiley Online Library Journals Frontfile Complete
subjects Anion exchanging
C1N1
Carbon
Catalytic activity
Cementite
Chemical reduction
Chemical synthesis
Electron transfer
Encapsulation
encapsulation in N‐doped carbon
Fe3C
Fuel cells
Iron carbides
oxygen reduction reaction (ORR)
Oxygen reduction reactions
title Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transfer%20from%20Encapsulated%20Fe3C%20to%20the%20Outermost%20N%E2%80%90Doped%20Carbon%20Layer%20for%20Superior%20ORR&rft.jtitle=Advanced%20functional%20materials&rft.au=Qu%C3%ADlez%E2%80%90Bermejo,%20Javier&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202403810&rft_dat=%3Cproquest_wiley%3E3111404629%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111404629&rft_id=info:pmid/&rfr_iscdi=true