Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance

The performance of triboelectric polymers relies on their molecular structure. Therefore, investigating how to construct high‐performance molecular structures of triboelectric polymers becomes imperative, yet the relationship between microscopic structural parameters and triboelectric performance re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (40), p.n/a
Hauptverfasser: Zhou, Siqian, Tao, Xinglin, Liu, Zhaoqi, Wu, Han, Guan, Zhengxin, Liu, Liqiang, Li, Jun, Chen, Xiangyu, Ou‐Yang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zhou, Siqian
Tao, Xinglin
Liu, Zhaoqi
Wu, Han
Guan, Zhengxin
Liu, Liqiang
Li, Jun
Chen, Xiangyu
Ou‐Yang, Wei
description The performance of triboelectric polymers relies on their molecular structure. Therefore, investigating how to construct high‐performance molecular structures of triboelectric polymers becomes imperative, yet the relationship between microscopic structural parameters and triboelectric performance remains unclear. In this study, the relationship is studied between dihedral angles of adjacent conjugated planes and triboelectric performance. Various polyimide monomers are synthesized to manipulate the conjugated dihedral angles within the molecular chains. Introducing larger dihedral angles in polyimides (PIs) reduces the conjugation between molecular chains, suppressing the formation of charge transfer complexes (CTCs), and widening the energy gap between molecular orbitals. With the increase in dihedral angles, the output performance improved by 100%. The surface charge density of 335 µC·m−2 is achieved through the synergistic effect of the high charge retention capability of the PI film and the high triboelectric properties of the corona‐polarized fluorinated ethylene propylene (FEP). A large dihedral angle can form numerous deep traps and effectively prevent charge escaping while ensuring stable output. This study provides a feasible strategy for investigating the construction of high triboelectric performance molecular structures, enriching the understanding of how molecular structures influence the triboelectric properties of polymer materials and promote high‐performance fluorine‐free and environmentally friendly polymers. Increasing the dihedral angle of PI can improve surface charge density and charge retention capacity. Under the synergistic effect of corona‐polarized FEP and high charge retention PI, the surface charge density reaches 335 µC·m−2. The correlation between dihedral angle and triboelectric performance has been clarified, and its application range has been expanded.
doi_str_mv 10.1002/adfm.202405443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111404588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111404588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-db71f5c874979da392c4ab204922c060abb34cbf5c0c215cfc704d7cf81b308e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU28e05lZlr4UWhSp4EZCJpNMU6ZJzbRI_70ZKnXp6j7Od-6Fg9A9gQEBoI-yMtsBBcoh5ZxdoB4ZkmHCgOaX5558XKObtt0AkCxjvIc-33R9aOTeeoe9wRO71lWQDR65utE4Lpe-0SoSAU9dbZ3WwboaG9_Na-lUN62CLb2O3D5YhV91iPI2avoWXRnZtPrut_bR-2y6Gj8li5f583i0SBTllCVVmRGTqjzjRVZUkhVUcVlS4AWlCoYgy5JxVUYEFCWpMioDXmXK5KRkkGvWRw-nu7vgvw663YuNPwQXXwpGCOHA0zyP1OBEqeDbNmgjdsFuZTgKAqKLUHQRinOE0VCcDN-20cd_aDGazJZ_3h-EVXXR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111404588</pqid></control><display><type>article</type><title>Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Siqian ; Tao, Xinglin ; Liu, Zhaoqi ; Wu, Han ; Guan, Zhengxin ; Liu, Liqiang ; Li, Jun ; Chen, Xiangyu ; Ou‐Yang, Wei</creator><creatorcontrib>Zhou, Siqian ; Tao, Xinglin ; Liu, Zhaoqi ; Wu, Han ; Guan, Zhengxin ; Liu, Liqiang ; Li, Jun ; Chen, Xiangyu ; Ou‐Yang, Wei</creatorcontrib><description>The performance of triboelectric polymers relies on their molecular structure. Therefore, investigating how to construct high‐performance molecular structures of triboelectric polymers becomes imperative, yet the relationship between microscopic structural parameters and triboelectric performance remains unclear. In this study, the relationship is studied between dihedral angles of adjacent conjugated planes and triboelectric performance. Various polyimide monomers are synthesized to manipulate the conjugated dihedral angles within the molecular chains. Introducing larger dihedral angles in polyimides (PIs) reduces the conjugation between molecular chains, suppressing the formation of charge transfer complexes (CTCs), and widening the energy gap between molecular orbitals. With the increase in dihedral angles, the output performance improved by 100%. The surface charge density of 335 µC·m−2 is achieved through the synergistic effect of the high charge retention capability of the PI film and the high triboelectric properties of the corona‐polarized fluorinated ethylene propylene (FEP). A large dihedral angle can form numerous deep traps and effectively prevent charge escaping while ensuring stable output. This study provides a feasible strategy for investigating the construction of high triboelectric performance molecular structures, enriching the understanding of how molecular structures influence the triboelectric properties of polymer materials and promote high‐performance fluorine‐free and environmentally friendly polymers. Increasing the dihedral angle of PI can improve surface charge density and charge retention capacity. Under the synergistic effect of corona‐polarized FEP and high charge retention PI, the surface charge density reaches 335 µC·m−2. The correlation between dihedral angle and triboelectric performance has been clarified, and its application range has been expanded.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202405443</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Charge density ; Charge materials ; charge retention capability ; Charge transfer ; Chemical synthesis ; conjugate polymer ; Conjugation ; Dihedral angle ; Energy gap ; Fluorinated ethylene propylenes ; Fluorine ; Molecular chains ; Molecular orbitals ; Molecular structure ; polyimide ; Polyimide resins ; Polymers ; Surface charge ; surface charge density ; Synergistic effect ; triboelectric nanogenerator</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (40), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-db71f5c874979da392c4ab204922c060abb34cbf5c0c215cfc704d7cf81b308e3</cites><orcidid>0000-0002-0511-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202405443$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202405443$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Siqian</creatorcontrib><creatorcontrib>Tao, Xinglin</creatorcontrib><creatorcontrib>Liu, Zhaoqi</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><creatorcontrib>Guan, Zhengxin</creatorcontrib><creatorcontrib>Liu, Liqiang</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Ou‐Yang, Wei</creatorcontrib><title>Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance</title><title>Advanced functional materials</title><description>The performance of triboelectric polymers relies on their molecular structure. Therefore, investigating how to construct high‐performance molecular structures of triboelectric polymers becomes imperative, yet the relationship between microscopic structural parameters and triboelectric performance remains unclear. In this study, the relationship is studied between dihedral angles of adjacent conjugated planes and triboelectric performance. Various polyimide monomers are synthesized to manipulate the conjugated dihedral angles within the molecular chains. Introducing larger dihedral angles in polyimides (PIs) reduces the conjugation between molecular chains, suppressing the formation of charge transfer complexes (CTCs), and widening the energy gap between molecular orbitals. With the increase in dihedral angles, the output performance improved by 100%. The surface charge density of 335 µC·m−2 is achieved through the synergistic effect of the high charge retention capability of the PI film and the high triboelectric properties of the corona‐polarized fluorinated ethylene propylene (FEP). A large dihedral angle can form numerous deep traps and effectively prevent charge escaping while ensuring stable output. This study provides a feasible strategy for investigating the construction of high triboelectric performance molecular structures, enriching the understanding of how molecular structures influence the triboelectric properties of polymer materials and promote high‐performance fluorine‐free and environmentally friendly polymers. Increasing the dihedral angle of PI can improve surface charge density and charge retention capacity. Under the synergistic effect of corona‐polarized FEP and high charge retention PI, the surface charge density reaches 335 µC·m−2. The correlation between dihedral angle and triboelectric performance has been clarified, and its application range has been expanded.</description><subject>Charge density</subject><subject>Charge materials</subject><subject>charge retention capability</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>conjugate polymer</subject><subject>Conjugation</subject><subject>Dihedral angle</subject><subject>Energy gap</subject><subject>Fluorinated ethylene propylenes</subject><subject>Fluorine</subject><subject>Molecular chains</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>polyimide</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Surface charge</subject><subject>surface charge density</subject><subject>Synergistic effect</subject><subject>triboelectric nanogenerator</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU28e05lZlr4UWhSp4EZCJpNMU6ZJzbRI_70ZKnXp6j7Od-6Fg9A9gQEBoI-yMtsBBcoh5ZxdoB4ZkmHCgOaX5558XKObtt0AkCxjvIc-33R9aOTeeoe9wRO71lWQDR65utE4Lpe-0SoSAU9dbZ3WwboaG9_Na-lUN62CLb2O3D5YhV91iPI2avoWXRnZtPrut_bR-2y6Gj8li5f583i0SBTllCVVmRGTqjzjRVZUkhVUcVlS4AWlCoYgy5JxVUYEFCWpMioDXmXK5KRkkGvWRw-nu7vgvw663YuNPwQXXwpGCOHA0zyP1OBEqeDbNmgjdsFuZTgKAqKLUHQRinOE0VCcDN-20cd_aDGazJZ_3h-EVXXR</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhou, Siqian</creator><creator>Tao, Xinglin</creator><creator>Liu, Zhaoqi</creator><creator>Wu, Han</creator><creator>Guan, Zhengxin</creator><creator>Liu, Liqiang</creator><creator>Li, Jun</creator><creator>Chen, Xiangyu</creator><creator>Ou‐Yang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0511-9225</orcidid></search><sort><creationdate>20241001</creationdate><title>Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance</title><author>Zhou, Siqian ; Tao, Xinglin ; Liu, Zhaoqi ; Wu, Han ; Guan, Zhengxin ; Liu, Liqiang ; Li, Jun ; Chen, Xiangyu ; Ou‐Yang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-db71f5c874979da392c4ab204922c060abb34cbf5c0c215cfc704d7cf81b308e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge density</topic><topic>Charge materials</topic><topic>charge retention capability</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>conjugate polymer</topic><topic>Conjugation</topic><topic>Dihedral angle</topic><topic>Energy gap</topic><topic>Fluorinated ethylene propylenes</topic><topic>Fluorine</topic><topic>Molecular chains</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>polyimide</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Surface charge</topic><topic>surface charge density</topic><topic>Synergistic effect</topic><topic>triboelectric nanogenerator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Siqian</creatorcontrib><creatorcontrib>Tao, Xinglin</creatorcontrib><creatorcontrib>Liu, Zhaoqi</creatorcontrib><creatorcontrib>Wu, Han</creatorcontrib><creatorcontrib>Guan, Zhengxin</creatorcontrib><creatorcontrib>Liu, Liqiang</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Ou‐Yang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Siqian</au><au>Tao, Xinglin</au><au>Liu, Zhaoqi</au><au>Wu, Han</au><au>Guan, Zhengxin</au><au>Liu, Liqiang</au><au>Li, Jun</au><au>Chen, Xiangyu</au><au>Ou‐Yang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The performance of triboelectric polymers relies on their molecular structure. Therefore, investigating how to construct high‐performance molecular structures of triboelectric polymers becomes imperative, yet the relationship between microscopic structural parameters and triboelectric performance remains unclear. In this study, the relationship is studied between dihedral angles of adjacent conjugated planes and triboelectric performance. Various polyimide monomers are synthesized to manipulate the conjugated dihedral angles within the molecular chains. Introducing larger dihedral angles in polyimides (PIs) reduces the conjugation between molecular chains, suppressing the formation of charge transfer complexes (CTCs), and widening the energy gap between molecular orbitals. With the increase in dihedral angles, the output performance improved by 100%. The surface charge density of 335 µC·m−2 is achieved through the synergistic effect of the high charge retention capability of the PI film and the high triboelectric properties of the corona‐polarized fluorinated ethylene propylene (FEP). A large dihedral angle can form numerous deep traps and effectively prevent charge escaping while ensuring stable output. This study provides a feasible strategy for investigating the construction of high triboelectric performance molecular structures, enriching the understanding of how molecular structures influence the triboelectric properties of polymer materials and promote high‐performance fluorine‐free and environmentally friendly polymers. Increasing the dihedral angle of PI can improve surface charge density and charge retention capacity. Under the synergistic effect of corona‐polarized FEP and high charge retention PI, the surface charge density reaches 335 µC·m−2. The correlation between dihedral angle and triboelectric performance has been clarified, and its application range has been expanded.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202405443</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0511-9225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3111404588
source Wiley Online Library Journals Frontfile Complete
subjects Charge density
Charge materials
charge retention capability
Charge transfer
Chemical synthesis
conjugate polymer
Conjugation
Dihedral angle
Energy gap
Fluorinated ethylene propylenes
Fluorine
Molecular chains
Molecular orbitals
Molecular structure
polyimide
Polyimide resins
Polymers
Surface charge
surface charge density
Synergistic effect
triboelectric nanogenerator
title Regulation of Dihedral Angle on Molecular Engineering for Enhancing Triboelectric Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Dihedral%20Angle%20on%20Molecular%20Engineering%20for%20Enhancing%20Triboelectric%20Performance&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Siqian&rft.date=2024-10-01&rft.volume=34&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202405443&rft_dat=%3Cproquest_cross%3E3111404588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111404588&rft_id=info:pmid/&rfr_iscdi=true