Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements

Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laborat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste disposal & sustainable energy 2024-09, Vol.6 (3), p.429-437
Hauptverfasser: Bekgöz, Baki Osman, Günkaya, Zerrin, Özkan, Kemal, Özkan, Metin, Özkan, Aysun, Banar, Müfide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 3
container_start_page 429
container_title Waste disposal & sustainable energy
container_volume 6
creator Bekgöz, Baki Osman
Günkaya, Zerrin
Özkan, Kemal
Özkan, Metin
Özkan, Aysun
Banar, Müfide
description Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher R 2 values (>0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest R 2 (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction ( R 2 =0.95) compared to the prediction from the direct elemental data ( R 2 =0.99). Graphical abstract
doi_str_mv 10.1007/s42768-023-00187-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111365159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111365159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-170d2982488c737dd27ceac5107474e72ca6ae9c0a29939ce3e5c99fcfb48c8c3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsFRfwFXA9WiSuSRZSvEGBUF0HdLMmYtOJ-PJpOIb-ZimrcWdqxNOvu-H5E-SC0avGKXi2udclDKlPEspZVKk4iiZ8YLnqZCKHR_OStLT5Nz7bkXzsihZwcpZ8v0MDUJcuoGsjIeKjAhVZ6ftwtWk7ZoWkLRgpm5oyMb0AUjtkCDUwUNaAXabaNUBehL8lrFu2Lg-bBNMTwYIuBvTp8N3f4iPCvSwhmGKl5WZDDFDRfwIdkLXoBnbzpI1GB9wR_mz5KQ2vYfz3zlPXu9uXxYP6fLp_nFxs0wtF3RKmaAVV5LnUlqRiariwoKxBaMiFzkIbk1pQFlquFKZspBBYZWqbb3KpZU2myeX-9wR3UcAP-k3FzC-xOuMMZaVBStUpPiesui8j3-hR-zWBr80o3pbit6XomMpeleKFlHK9pKP8NAA_kX_Y_0AbBiU8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111365159</pqid></control><display><type>article</type><title>Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements</title><source>SpringerLink Journals</source><creator>Bekgöz, Baki Osman ; Günkaya, Zerrin ; Özkan, Kemal ; Özkan, Metin ; Özkan, Aysun ; Banar, Müfide</creator><creatorcontrib>Bekgöz, Baki Osman ; Günkaya, Zerrin ; Özkan, Kemal ; Özkan, Metin ; Özkan, Aysun ; Banar, Müfide</creatorcontrib><description>Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher R 2 values (&gt;0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest R 2 (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction ( R 2 =0.95) compared to the prediction from the direct elemental data ( R 2 =0.99). Graphical abstract</description><identifier>ISSN: 2524-7980</identifier><identifier>EISSN: 2524-7891</identifier><identifier>DOI: 10.1007/s42768-023-00187-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Alternative energy ; Artificial neural networks ; Biomass ; Bomb calorimetry ; Calorific value ; Cement industry ; Coal ; Datasets ; Deep learning ; Earth and Environmental Science ; Emission standards ; Emissions ; Energy consumption ; Engineering Thermodynamics ; Environment ; Factories ; Fossil fuels ; Gases ; Gaussian process ; Heat and Mass Transfer ; Infrared cameras ; Kilns ; Machine learning ; Mathematical models ; Moisture content ; Near infrared radiation ; Neural networks ; Predictions ; Refuse derived fuels ; Regression analysis ; Regression models ; Renewable and Green Energy ; Root-mean-square errors ; Solid wastes ; Spectrometry ; Support vector machines ; Waste Management/Waste Technology ; Waste to energy</subject><ispartof>Waste disposal &amp; sustainable energy, 2024-09, Vol.6 (3), p.429-437</ispartof><rights>Zhejiang University Press 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-170d2982488c737dd27ceac5107474e72ca6ae9c0a29939ce3e5c99fcfb48c8c3</cites><orcidid>0000-0003-2795-6208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42768-023-00187-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42768-023-00187-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bekgöz, Baki Osman</creatorcontrib><creatorcontrib>Günkaya, Zerrin</creatorcontrib><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Özkan, Metin</creatorcontrib><creatorcontrib>Özkan, Aysun</creatorcontrib><creatorcontrib>Banar, Müfide</creatorcontrib><title>Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements</title><title>Waste disposal &amp; sustainable energy</title><addtitle>Waste Dispos. Sustain. Energy</addtitle><description>Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher R 2 values (&gt;0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest R 2 (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction ( R 2 =0.95) compared to the prediction from the direct elemental data ( R 2 =0.99). Graphical abstract</description><subject>Alternative energy</subject><subject>Artificial neural networks</subject><subject>Biomass</subject><subject>Bomb calorimetry</subject><subject>Calorific value</subject><subject>Cement industry</subject><subject>Coal</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Engineering Thermodynamics</subject><subject>Environment</subject><subject>Factories</subject><subject>Fossil fuels</subject><subject>Gases</subject><subject>Gaussian process</subject><subject>Heat and Mass Transfer</subject><subject>Infrared cameras</subject><subject>Kilns</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Moisture content</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Refuse derived fuels</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Renewable and Green Energy</subject><subject>Root-mean-square errors</subject><subject>Solid wastes</subject><subject>Spectrometry</subject><subject>Support vector machines</subject><subject>Waste Management/Waste Technology</subject><subject>Waste to energy</subject><issn>2524-7980</issn><issn>2524-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhgdRsFRfwFXA9WiSuSRZSvEGBUF0HdLMmYtOJ-PJpOIb-ZimrcWdqxNOvu-H5E-SC0avGKXi2udclDKlPEspZVKk4iiZ8YLnqZCKHR_OStLT5Nz7bkXzsihZwcpZ8v0MDUJcuoGsjIeKjAhVZ6ftwtWk7ZoWkLRgpm5oyMb0AUjtkCDUwUNaAXabaNUBehL8lrFu2Lg-bBNMTwYIuBvTp8N3f4iPCvSwhmGKl5WZDDFDRfwIdkLXoBnbzpI1GB9wR_mz5KQ2vYfz3zlPXu9uXxYP6fLp_nFxs0wtF3RKmaAVV5LnUlqRiariwoKxBaMiFzkIbk1pQFlquFKZspBBYZWqbb3KpZU2myeX-9wR3UcAP-k3FzC-xOuMMZaVBStUpPiesui8j3-hR-zWBr80o3pbit6XomMpeleKFlHK9pKP8NAA_kX_Y_0AbBiU8w</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Bekgöz, Baki Osman</creator><creator>Günkaya, Zerrin</creator><creator>Özkan, Kemal</creator><creator>Özkan, Metin</creator><creator>Özkan, Aysun</creator><creator>Banar, Müfide</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2795-6208</orcidid></search><sort><creationdate>20240901</creationdate><title>Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements</title><author>Bekgöz, Baki Osman ; Günkaya, Zerrin ; Özkan, Kemal ; Özkan, Metin ; Özkan, Aysun ; Banar, Müfide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-170d2982488c737dd27ceac5107474e72ca6ae9c0a29939ce3e5c99fcfb48c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy</topic><topic>Artificial neural networks</topic><topic>Biomass</topic><topic>Bomb calorimetry</topic><topic>Calorific value</topic><topic>Cement industry</topic><topic>Coal</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Engineering Thermodynamics</topic><topic>Environment</topic><topic>Factories</topic><topic>Fossil fuels</topic><topic>Gases</topic><topic>Gaussian process</topic><topic>Heat and Mass Transfer</topic><topic>Infrared cameras</topic><topic>Kilns</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Moisture content</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Refuse derived fuels</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Renewable and Green Energy</topic><topic>Root-mean-square errors</topic><topic>Solid wastes</topic><topic>Spectrometry</topic><topic>Support vector machines</topic><topic>Waste Management/Waste Technology</topic><topic>Waste to energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekgöz, Baki Osman</creatorcontrib><creatorcontrib>Günkaya, Zerrin</creatorcontrib><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Özkan, Metin</creatorcontrib><creatorcontrib>Özkan, Aysun</creatorcontrib><creatorcontrib>Banar, Müfide</creatorcontrib><collection>CrossRef</collection><jtitle>Waste disposal &amp; sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekgöz, Baki Osman</au><au>Günkaya, Zerrin</au><au>Özkan, Kemal</au><au>Özkan, Metin</au><au>Özkan, Aysun</au><au>Banar, Müfide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements</atitle><jtitle>Waste disposal &amp; sustainable energy</jtitle><stitle>Waste Dispos. Sustain. Energy</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>429</spage><epage>437</epage><pages>429-437</pages><issn>2524-7980</issn><eissn>2524-7891</eissn><abstract>Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher R 2 values (&gt;0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest R 2 (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction ( R 2 =0.95) compared to the prediction from the direct elemental data ( R 2 =0.99). Graphical abstract</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42768-023-00187-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2795-6208</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-7980
ispartof Waste disposal & sustainable energy, 2024-09, Vol.6 (3), p.429-437
issn 2524-7980
2524-7891
language eng
recordid cdi_proquest_journals_3111365159
source SpringerLink Journals
subjects Alternative energy
Artificial neural networks
Biomass
Bomb calorimetry
Calorific value
Cement industry
Coal
Datasets
Deep learning
Earth and Environmental Science
Emission standards
Emissions
Energy consumption
Engineering Thermodynamics
Environment
Factories
Fossil fuels
Gases
Gaussian process
Heat and Mass Transfer
Infrared cameras
Kilns
Machine learning
Mathematical models
Moisture content
Near infrared radiation
Neural networks
Predictions
Refuse derived fuels
Regression analysis
Regression models
Renewable and Green Energy
Root-mean-square errors
Solid wastes
Spectrometry
Support vector machines
Waste Management/Waste Technology
Waste to energy
title Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression%20based%20prediction%20of%20higher%20heating%20value%20for%20refuse-derived%20fuel%20using%20convolutional%20neural%20networks%20predicted%20elemental%20data%20and%20spectrographic%20measurements&rft.jtitle=Waste%20disposal%20&%20sustainable%20energy&rft.au=Bekg%C3%B6z,%20Baki%20Osman&rft.date=2024-09-01&rft.volume=6&rft.issue=3&rft.spage=429&rft.epage=437&rft.pages=429-437&rft.issn=2524-7980&rft.eissn=2524-7891&rft_id=info:doi/10.1007/s42768-023-00187-7&rft_dat=%3Cproquest_cross%3E3111365159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111365159&rft_id=info:pmid/&rfr_iscdi=true