Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech

The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Kim, Youngjae, Jeon, Yejin, Lee, Gary Geunbae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kim, Youngjae
Jeon, Yejin
Lee, Gary Geunbae
description The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111342811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111342811</sourcerecordid><originalsourceid>FETCH-proquest_journals_31113428113</originalsourceid><addsrcrecordid>eNqNi70KwjAYRYMgWLTvEHAOtEmrXVVaHHRR9xLSrzYlJDU_2Mc3gg_gcs9wz1mghDKWk6qgdIVS58Ysy-huT8uSJQgOoZOGHLmDDl-kfgbpvBS4Ae6DBVzP3nLhpdG4NxbXeuBaRA1fg_KSqG_BFeY61uZNbuBMsALwA2ZPvCH3CUAMG7TsuXKQ_rhG26Z-nM5ksuYVwPl2jJmOV8vyPGcFreL-Z30APZlGTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111342811</pqid></control><display><type>article</type><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><source>Free E- Journals</source><creator>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</creator><creatorcontrib>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</creatorcontrib><description>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio data ; Data acquisition ; Learning ; Linguistics ; Speech recognition</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Youngjae</creatorcontrib><creatorcontrib>Jeon, Yejin</creatorcontrib><creatorcontrib>Lee, Gary Geunbae</creatorcontrib><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><title>arXiv.org</title><description>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</description><subject>Audio data</subject><subject>Data acquisition</subject><subject>Learning</subject><subject>Linguistics</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYRYMgWLTvEHAOtEmrXVVaHHRR9xLSrzYlJDU_2Mc3gg_gcs9wz1mghDKWk6qgdIVS58Ysy-huT8uSJQgOoZOGHLmDDl-kfgbpvBS4Ae6DBVzP3nLhpdG4NxbXeuBaRA1fg_KSqG_BFeY61uZNbuBMsALwA2ZPvCH3CUAMG7TsuXKQ_rhG26Z-nM5ksuYVwPl2jJmOV8vyPGcFreL-Z30APZlGTA</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Kim, Youngjae</creator><creator>Jeon, Yejin</creator><creator>Lee, Gary Geunbae</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240927</creationdate><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><author>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31113428113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio data</topic><topic>Data acquisition</topic><topic>Learning</topic><topic>Linguistics</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngjae</creatorcontrib><creatorcontrib>Jeon, Yejin</creatorcontrib><creatorcontrib>Lee, Gary Geunbae</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngjae</au><au>Jeon, Yejin</au><au>Lee, Gary Geunbae</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</atitle><jtitle>arXiv.org</jtitle><date>2024-09-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_3111342811
source Free E- Journals
subjects Audio data
Data acquisition
Learning
Linguistics
Speech recognition
title Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Audio-Based%20Linguistic%20Feature%20Extraction%20for%20Enhancing%20Multi-lingual%20and%20Low-Resource%20Text-to-Speech&rft.jtitle=arXiv.org&rft.au=Kim,%20Youngjae&rft.date=2024-09-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111342811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111342811&rft_id=info:pmid/&rfr_iscdi=true