Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech
The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Youngjae Jeon, Yejin Lee, Gary Geunbae |
description | The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3111342811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111342811</sourcerecordid><originalsourceid>FETCH-proquest_journals_31113428113</originalsourceid><addsrcrecordid>eNqNi70KwjAYRYMgWLTvEHAOtEmrXVVaHHRR9xLSrzYlJDU_2Mc3gg_gcs9wz1mghDKWk6qgdIVS58Ysy-huT8uSJQgOoZOGHLmDDl-kfgbpvBS4Ae6DBVzP3nLhpdG4NxbXeuBaRA1fg_KSqG_BFeY61uZNbuBMsALwA2ZPvCH3CUAMG7TsuXKQ_rhG26Z-nM5ksuYVwPl2jJmOV8vyPGcFreL-Z30APZlGTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111342811</pqid></control><display><type>article</type><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><source>Free E- Journals</source><creator>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</creator><creatorcontrib>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</creatorcontrib><description>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio data ; Data acquisition ; Learning ; Linguistics ; Speech recognition</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Youngjae</creatorcontrib><creatorcontrib>Jeon, Yejin</creatorcontrib><creatorcontrib>Lee, Gary Geunbae</creatorcontrib><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><title>arXiv.org</title><description>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</description><subject>Audio data</subject><subject>Data acquisition</subject><subject>Learning</subject><subject>Linguistics</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAYRYMgWLTvEHAOtEmrXVVaHHRR9xLSrzYlJDU_2Mc3gg_gcs9wz1mghDKWk6qgdIVS58Ysy-huT8uSJQgOoZOGHLmDDl-kfgbpvBS4Ae6DBVzP3nLhpdG4NxbXeuBaRA1fg_KSqG_BFeY61uZNbuBMsALwA2ZPvCH3CUAMG7TsuXKQ_rhG26Z-nM5ksuYVwPl2jJmOV8vyPGcFreL-Z30APZlGTA</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Kim, Youngjae</creator><creator>Jeon, Yejin</creator><creator>Lee, Gary Geunbae</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240927</creationdate><title>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</title><author>Kim, Youngjae ; Jeon, Yejin ; Lee, Gary Geunbae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31113428113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio data</topic><topic>Data acquisition</topic><topic>Learning</topic><topic>Linguistics</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngjae</creatorcontrib><creatorcontrib>Jeon, Yejin</creatorcontrib><creatorcontrib>Lee, Gary Geunbae</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngjae</au><au>Jeon, Yejin</au><au>Lee, Gary Geunbae</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech</atitle><jtitle>arXiv.org</jtitle><date>2024-09-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The difficulty of acquiring abundant, high-quality data, especially in multi-lingual contexts, has sparked interest in addressing low-resource scenarios. Moreover, current literature rely on fixed expressions from language IDs, which results in the inadequate learning of language representations, and the failure to generate speech in unseen languages. To address these challenges, we propose a novel method that directly extracts linguistic features from audio input while effectively filtering out miscellaneous acoustic information including speaker-specific attributes like timbre. Subjective and objective evaluations affirm the effectiveness of our approach for multi-lingual text-to-speech, and highlight its superiority in low-resource transfer learning for previously unseen language.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3111342811 |
source | Free E- Journals |
subjects | Audio data Data acquisition Learning Linguistics Speech recognition |
title | Audio-Based Linguistic Feature Extraction for Enhancing Multi-lingual and Low-Resource Text-to-Speech |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Audio-Based%20Linguistic%20Feature%20Extraction%20for%20Enhancing%20Multi-lingual%20and%20Low-Resource%20Text-to-Speech&rft.jtitle=arXiv.org&rft.au=Kim,%20Youngjae&rft.date=2024-09-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3111342811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111342811&rft_id=info:pmid/&rfr_iscdi=true |