Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery

Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. Herein, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2024-09, Vol.18 (9), p.n/a
Hauptverfasser: Park, Kyumin, Park, Byeongho, Seo, Kanghoon, Jang, Hyekyeong, Hahm, Myung Gwan, Oh, Youngseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 18
creator Park, Kyumin
Park, Byeongho
Seo, Kanghoon
Jang, Hyekyeong
Hahm, Myung Gwan
Oh, Youngseok
description Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. Herein, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aerogels are fabricated using a simple yet scalable hydrothermal method, as used in lithium‐ion batteries. The outer nitrogen‐doped graphitic carbon (NGr) layers support efficient charge transport, even under a substantial compressive environment, and improve the structural integrity, showing significant improvements in battery performance, such as a high rate capacity of 820 mAh g−1 at the current density of 5 A g−1 and 94% capacity retention after 170 cycles (1170 mAh g−1 at 1 A g−1 after 170 cycles), even in the absence of polymer binders and conductive additives. The resulting NGr/MoS2/single‐walled carbon nanotubes freestanding electrodes have great potential to increase the volumetric and gravimetric energy density of batteries. The 3D hierarchical structure composed of single‐walled carbon nanotube aerogels (SWCNT aerogels) coated with MoS2 and a nitrogen‐doped carbon layer (NGr) is fabricated for the electrode materials for a lithium‐ion battery. The NGr/MoS2/SWCNT aerogels structure can increase both the volumetric and gravimetric energy density. Furthermore, the high stability of this structure extends the cycle life of the battery maintaining a high capacity.
doi_str_mv 10.1002/pssr.202400118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111278558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111278558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-ab4c709ea62a56f26f4484fb9b9e57cec0dbaf14a0ca1732ed7734ebfcbc5ce03</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ07GUhVaqQhEYbZs59y6SpNip4JsPALPyJOQqlUZme509_130ofQNSUDSgi73YTgB4wwTgil2Qnq0SxlUcoEOT32CT9HFyGsCElyweMe-nwEs1SVM6osW6yqAo9LMI0_DOaN0iXgSau9K_AQfL2AMmAV8L0H-Pn67oCqcNUCD6u6gIBt7fHELZbdaqQ2yrimxTPXLN123Y2mdYXvVNOAby_RmVVlgKtD7aO3-_HraBLNnh6mo-EsMkywLFKaG0FyUClTSWpZajnPuNW5ziERBgwptLKUK2IUFTGDQoiYg7ZGm8QAifvoZn934-v3LYRGruqtr7qXMqaUMpElSdZRgz1lfN1pBCs33q2VbyUlcmdX7uzKo90ukO8DH66E9h9aPs_nL3_ZX3tsg-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111278558</pqid></control><display><type>article</type><title>Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Kyumin ; Park, Byeongho ; Seo, Kanghoon ; Jang, Hyekyeong ; Hahm, Myung Gwan ; Oh, Youngseok</creator><creatorcontrib>Park, Kyumin ; Park, Byeongho ; Seo, Kanghoon ; Jang, Hyekyeong ; Hahm, Myung Gwan ; Oh, Youngseok</creatorcontrib><description>Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. Herein, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aerogels are fabricated using a simple yet scalable hydrothermal method, as used in lithium‐ion batteries. The outer nitrogen‐doped graphitic carbon (NGr) layers support efficient charge transport, even under a substantial compressive environment, and improve the structural integrity, showing significant improvements in battery performance, such as a high rate capacity of 820 mAh g−1 at the current density of 5 A g−1 and 94% capacity retention after 170 cycles (1170 mAh g−1 at 1 A g−1 after 170 cycles), even in the absence of polymer binders and conductive additives. The resulting NGr/MoS2/single‐walled carbon nanotubes freestanding electrodes have great potential to increase the volumetric and gravimetric energy density of batteries. The 3D hierarchical structure composed of single‐walled carbon nanotube aerogels (SWCNT aerogels) coated with MoS2 and a nitrogen‐doped carbon layer (NGr) is fabricated for the electrode materials for a lithium‐ion battery. The NGr/MoS2/SWCNT aerogels structure can increase both the volumetric and gravimetric energy density. Furthermore, the high stability of this structure extends the cycle life of the battery maintaining a high capacity.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202400118</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Anodes ; carbon nanotube aerogels ; Carbon nanotubes ; Charge materials ; Charge transport ; Electrodes ; Lithium-ion batteries ; Li‐ion battery ; Molybdenum disulfide ; MoS2 ; N‐doped carbon ; single‐walled carbon nanotubes ; Storage capacity ; Structural integrity ; Structural stability</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2024-09, Vol.18 (9), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-ab4c709ea62a56f26f4484fb9b9e57cec0dbaf14a0ca1732ed7734ebfcbc5ce03</cites><orcidid>0000-0002-1353-367X ; 0000-0002-6432-0578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202400118$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202400118$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Park, Kyumin</creatorcontrib><creatorcontrib>Park, Byeongho</creatorcontrib><creatorcontrib>Seo, Kanghoon</creatorcontrib><creatorcontrib>Jang, Hyekyeong</creatorcontrib><creatorcontrib>Hahm, Myung Gwan</creatorcontrib><creatorcontrib>Oh, Youngseok</creatorcontrib><title>Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. Herein, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aerogels are fabricated using a simple yet scalable hydrothermal method, as used in lithium‐ion batteries. The outer nitrogen‐doped graphitic carbon (NGr) layers support efficient charge transport, even under a substantial compressive environment, and improve the structural integrity, showing significant improvements in battery performance, such as a high rate capacity of 820 mAh g−1 at the current density of 5 A g−1 and 94% capacity retention after 170 cycles (1170 mAh g−1 at 1 A g−1 after 170 cycles), even in the absence of polymer binders and conductive additives. The resulting NGr/MoS2/single‐walled carbon nanotubes freestanding electrodes have great potential to increase the volumetric and gravimetric energy density of batteries. The 3D hierarchical structure composed of single‐walled carbon nanotube aerogels (SWCNT aerogels) coated with MoS2 and a nitrogen‐doped carbon layer (NGr) is fabricated for the electrode materials for a lithium‐ion battery. The NGr/MoS2/SWCNT aerogels structure can increase both the volumetric and gravimetric energy density. Furthermore, the high stability of this structure extends the cycle life of the battery maintaining a high capacity.</description><subject>Aerogels</subject><subject>Anodes</subject><subject>carbon nanotube aerogels</subject><subject>Carbon nanotubes</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>Electrodes</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion battery</subject><subject>Molybdenum disulfide</subject><subject>MoS2</subject><subject>N‐doped carbon</subject><subject>single‐walled carbon nanotubes</subject><subject>Storage capacity</subject><subject>Structural integrity</subject><subject>Structural stability</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ07GUhVaqQhEYbZs59y6SpNip4JsPALPyJOQqlUZme509_130ofQNSUDSgi73YTgB4wwTgil2Qnq0SxlUcoEOT32CT9HFyGsCElyweMe-nwEs1SVM6osW6yqAo9LMI0_DOaN0iXgSau9K_AQfL2AMmAV8L0H-Pn67oCqcNUCD6u6gIBt7fHELZbdaqQ2yrimxTPXLN123Y2mdYXvVNOAby_RmVVlgKtD7aO3-_HraBLNnh6mo-EsMkywLFKaG0FyUClTSWpZajnPuNW5ziERBgwptLKUK2IUFTGDQoiYg7ZGm8QAifvoZn934-v3LYRGruqtr7qXMqaUMpElSdZRgz1lfN1pBCs33q2VbyUlcmdX7uzKo90ukO8DH66E9h9aPs_nL3_ZX3tsg-c</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Park, Kyumin</creator><creator>Park, Byeongho</creator><creator>Seo, Kanghoon</creator><creator>Jang, Hyekyeong</creator><creator>Hahm, Myung Gwan</creator><creator>Oh, Youngseok</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1353-367X</orcidid><orcidid>https://orcid.org/0000-0002-6432-0578</orcidid></search><sort><creationdate>202409</creationdate><title>Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery</title><author>Park, Kyumin ; Park, Byeongho ; Seo, Kanghoon ; Jang, Hyekyeong ; Hahm, Myung Gwan ; Oh, Youngseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-ab4c709ea62a56f26f4484fb9b9e57cec0dbaf14a0ca1732ed7734ebfcbc5ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerogels</topic><topic>Anodes</topic><topic>carbon nanotube aerogels</topic><topic>Carbon nanotubes</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>Electrodes</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion battery</topic><topic>Molybdenum disulfide</topic><topic>MoS2</topic><topic>N‐doped carbon</topic><topic>single‐walled carbon nanotubes</topic><topic>Storage capacity</topic><topic>Structural integrity</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyumin</creatorcontrib><creatorcontrib>Park, Byeongho</creatorcontrib><creatorcontrib>Seo, Kanghoon</creatorcontrib><creatorcontrib>Jang, Hyekyeong</creatorcontrib><creatorcontrib>Hahm, Myung Gwan</creatorcontrib><creatorcontrib>Oh, Youngseok</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyumin</au><au>Park, Byeongho</au><au>Seo, Kanghoon</au><au>Jang, Hyekyeong</au><au>Hahm, Myung Gwan</au><au>Oh, Youngseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2024-09</date><risdate>2024</risdate><volume>18</volume><issue>9</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Molybdenum disulfide (MoS2) is a promising alternative to graphite anodes in battery materials. Therefore, it is critical to scrutinize their structural stability and charge storage capacity during battery operation. Herein, freestanding electrodes consisting of MoS2‐incorporated carbon nanotube aerogels are fabricated using a simple yet scalable hydrothermal method, as used in lithium‐ion batteries. The outer nitrogen‐doped graphitic carbon (NGr) layers support efficient charge transport, even under a substantial compressive environment, and improve the structural integrity, showing significant improvements in battery performance, such as a high rate capacity of 820 mAh g−1 at the current density of 5 A g−1 and 94% capacity retention after 170 cycles (1170 mAh g−1 at 1 A g−1 after 170 cycles), even in the absence of polymer binders and conductive additives. The resulting NGr/MoS2/single‐walled carbon nanotubes freestanding electrodes have great potential to increase the volumetric and gravimetric energy density of batteries. The 3D hierarchical structure composed of single‐walled carbon nanotube aerogels (SWCNT aerogels) coated with MoS2 and a nitrogen‐doped carbon layer (NGr) is fabricated for the electrode materials for a lithium‐ion battery. The NGr/MoS2/SWCNT aerogels structure can increase both the volumetric and gravimetric energy density. Furthermore, the high stability of this structure extends the cycle life of the battery maintaining a high capacity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202400118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1353-367X</orcidid><orcidid>https://orcid.org/0000-0002-6432-0578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2024-09, Vol.18 (9), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_3111278558
source Wiley Online Library Journals Frontfile Complete
subjects Aerogels
Anodes
carbon nanotube aerogels
Carbon nanotubes
Charge materials
Charge transport
Electrodes
Lithium-ion batteries
Li‐ion battery
Molybdenum disulfide
MoS2
N‐doped carbon
single‐walled carbon nanotubes
Storage capacity
Structural integrity
Structural stability
title Mechanically and Electrically Stable Hybrid Aerogels as Free‐Standing Anodes for High‐Capacity Lithium‐Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20and%20Electrically%20Stable%20Hybrid%20Aerogels%20as%20Free%E2%80%90Standing%20Anodes%20for%20High%E2%80%90Capacity%20Lithium%E2%80%90Ion%20Battery&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Park,%20Kyumin&rft.date=2024-09&rft.volume=18&rft.issue=9&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202400118&rft_dat=%3Cproquest_cross%3E3111278558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111278558&rft_id=info:pmid/&rfr_iscdi=true