1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients

Introduction & Objectives: Efficient automated EMR review methods to identify people with atypical diabetes (DM) for research are lacking. We aimed to develop a novel Python-based Expeditious Program for EMR Review (PEPPER) and assess its efficiency. Methods: We extracted the list of 1660 youth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2024-06, Vol.73 (Supplement_1), p.1
Hauptverfasser: AHMED, MAAZ, KUBOTA-MISHRA, ELIZABETH A., SILLER, ALEJANDRO F., DAVIS, ANSLEY E., MIGACZ, ILIANA, SISLEY, STEPHANIE, FARUQI, JORDANA, SAEED, ZEB I., AHMED, SARAH, PHILIPSON, LOUIS H., REDONDO, MARIA J., BALASUBRAMANYAM, ASHOK, TOSUR, MUSTAFA, STUDY GROUP, RADIANT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Supplement_1
container_start_page 1
container_title Diabetes (New York, N.Y.)
container_volume 73
creator AHMED, MAAZ
KUBOTA-MISHRA, ELIZABETH A.
SILLER, ALEJANDRO F.
DAVIS, ANSLEY E.
MIGACZ, ILIANA
SISLEY, STEPHANIE
FARUQI, JORDANA
SAEED, ZEB I.
AHMED, SARAH
PHILIPSON, LOUIS H.
REDONDO, MARIA J.
BALASUBRAMANYAM, ASHOK
TOSUR, MUSTAFA
STUDY GROUP, RADIANT
description Introduction & Objectives: Efficient automated EMR review methods to identify people with atypical diabetes (DM) for research are lacking. We aimed to develop a novel Python-based Expeditious Program for EMR Review (PEPPER) and assess its efficiency. Methods: We extracted the list of 1660 youth (
doi_str_mv 10.2337/db24-1294-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111275656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111275656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646-e6ee5223e50b7cb344f6acc58c8cbb1a2b210f0a51588ba1899630ce347f3ead3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsr_0DAjSLRfEwyM-5KW7XQaqlduAtJ5g2dMjY1SYX-e6dW7uIt7uFdOAhdM_rAhcgfK8szwniZkfkJ6rFSlETw_PMU9ShlnLC8zM_RRYxrSqnq0kPVkX7CA_zmf6DF4xZcCn7TODyDqnGmxQtwPlT4djxb3OEPMMGtui6tfIWTx5MKNqmp93iQ9ts_ftQYCwkinpvUdGW8RGe1aSNc_d8-Wj6Pl8NXMn1_mQwHU-JUpggoAMm5AElt7qzIsloZ52ThCmctM9xyRmtqJJNFYQ0rylIJ6kBkeS3AVKKPbo5vt8F_7yAmvfa7sOkWtWCM8VwqqTrq_ki54GMMUOttaL5M2GtG9cGiPljUBy96Ln4BR01i_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111275656</pqid></control><display><type>article</type><title>1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>AHMED, MAAZ ; KUBOTA-MISHRA, ELIZABETH A. ; SILLER, ALEJANDRO F. ; DAVIS, ANSLEY E. ; MIGACZ, ILIANA ; SISLEY, STEPHANIE ; FARUQI, JORDANA ; SAEED, ZEB I. ; AHMED, SARAH ; PHILIPSON, LOUIS H. ; REDONDO, MARIA J. ; BALASUBRAMANYAM, ASHOK ; TOSUR, MUSTAFA ; STUDY GROUP, RADIANT</creator><creatorcontrib>AHMED, MAAZ ; KUBOTA-MISHRA, ELIZABETH A. ; SILLER, ALEJANDRO F. ; DAVIS, ANSLEY E. ; MIGACZ, ILIANA ; SISLEY, STEPHANIE ; FARUQI, JORDANA ; SAEED, ZEB I. ; AHMED, SARAH ; PHILIPSON, LOUIS H. ; REDONDO, MARIA J. ; BALASUBRAMANYAM, ASHOK ; TOSUR, MUSTAFA ; STUDY GROUP, RADIANT</creatorcontrib><description>Introduction &amp; Objectives: Efficient automated EMR review methods to identify people with atypical diabetes (DM) for research are lacking. We aimed to develop a novel Python-based Expeditious Program for EMR Review (PEPPER) and assess its efficiency. Methods: We extracted the list of 1660 youth (&lt;19 yo) with type 2 DM (T2D) seen between 2019-2022 from EMR to identify candidates with A-β+ (autoantibody negative, preserved β-cell function) Ketosis-prone DM (KPD) for enrollment into Rare and Atypical Diabetes Network (RADIANT). We developed PEPPER to identify diabetic ketoacidosis (DKA) occurrence within 6 months (mo) of diagnosis to prioritize individuals for detailed manual chart review for RADIANT eligibility. We also manually reviewed EMR of 100 youth with T2D to identify DKA occurrence within 6 mo of diagnosis without PEPPER for comparison. Results: PEPPER identified 110 youth with T2D who had DKA within 6 mo of diagnosis. Twenty-one met the RADIANT A-β+ KPD criteria. The time spent to identify those with T2D and DKA was significantly shorter with PEPPER compared to manual review (13.4 ± 3.9 vs. 26.6 ± 9.4 seconds, p&lt;0.001), translating to 6.2 vs. 12.3 hours to review 1660 charts with and without PEPPER. Both methods yielded identical results, confirming PEPPER’s accuracy. Conclusion: We developed a novel, efficient and reliable EMR review method that could be used on large cohorts to identify research candidates.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db24-1294-P</identifier><language>eng</language><publisher>New York: American Diabetes Association</publisher><subject>Autoantibodies ; Beta cells ; Diabetes ; Diabetes mellitus ; Diagnosis ; Electronic medical records ; Ketoacidosis</subject><ispartof>Diabetes (New York, N.Y.), 2024-06, Vol.73 (Supplement_1), p.1</ispartof><rights>Copyright American Diabetes Association Jun 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>AHMED, MAAZ</creatorcontrib><creatorcontrib>KUBOTA-MISHRA, ELIZABETH A.</creatorcontrib><creatorcontrib>SILLER, ALEJANDRO F.</creatorcontrib><creatorcontrib>DAVIS, ANSLEY E.</creatorcontrib><creatorcontrib>MIGACZ, ILIANA</creatorcontrib><creatorcontrib>SISLEY, STEPHANIE</creatorcontrib><creatorcontrib>FARUQI, JORDANA</creatorcontrib><creatorcontrib>SAEED, ZEB I.</creatorcontrib><creatorcontrib>AHMED, SARAH</creatorcontrib><creatorcontrib>PHILIPSON, LOUIS H.</creatorcontrib><creatorcontrib>REDONDO, MARIA J.</creatorcontrib><creatorcontrib>BALASUBRAMANYAM, ASHOK</creatorcontrib><creatorcontrib>TOSUR, MUSTAFA</creatorcontrib><creatorcontrib>STUDY GROUP, RADIANT</creatorcontrib><title>1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients</title><title>Diabetes (New York, N.Y.)</title><description>Introduction &amp; Objectives: Efficient automated EMR review methods to identify people with atypical diabetes (DM) for research are lacking. We aimed to develop a novel Python-based Expeditious Program for EMR Review (PEPPER) and assess its efficiency. Methods: We extracted the list of 1660 youth (&lt;19 yo) with type 2 DM (T2D) seen between 2019-2022 from EMR to identify candidates with A-β+ (autoantibody negative, preserved β-cell function) Ketosis-prone DM (KPD) for enrollment into Rare and Atypical Diabetes Network (RADIANT). We developed PEPPER to identify diabetic ketoacidosis (DKA) occurrence within 6 months (mo) of diagnosis to prioritize individuals for detailed manual chart review for RADIANT eligibility. We also manually reviewed EMR of 100 youth with T2D to identify DKA occurrence within 6 mo of diagnosis without PEPPER for comparison. Results: PEPPER identified 110 youth with T2D who had DKA within 6 mo of diagnosis. Twenty-one met the RADIANT A-β+ KPD criteria. The time spent to identify those with T2D and DKA was significantly shorter with PEPPER compared to manual review (13.4 ± 3.9 vs. 26.6 ± 9.4 seconds, p&lt;0.001), translating to 6.2 vs. 12.3 hours to review 1660 charts with and without PEPPER. Both methods yielded identical results, confirming PEPPER’s accuracy. Conclusion: We developed a novel, efficient and reliable EMR review method that could be used on large cohorts to identify research candidates.</description><subject>Autoantibodies</subject><subject>Beta cells</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diagnosis</subject><subject>Electronic medical records</subject><subject>Ketoacidosis</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsr_0DAjSLRfEwyM-5KW7XQaqlduAtJ5g2dMjY1SYX-e6dW7uIt7uFdOAhdM_rAhcgfK8szwniZkfkJ6rFSlETw_PMU9ShlnLC8zM_RRYxrSqnq0kPVkX7CA_zmf6DF4xZcCn7TODyDqnGmxQtwPlT4djxb3OEPMMGtui6tfIWTx5MKNqmp93iQ9ts_ftQYCwkinpvUdGW8RGe1aSNc_d8-Wj6Pl8NXMn1_mQwHU-JUpggoAMm5AElt7qzIsloZ52ThCmctM9xyRmtqJJNFYQ0rylIJ6kBkeS3AVKKPbo5vt8F_7yAmvfa7sOkWtWCM8VwqqTrq_ki54GMMUOttaL5M2GtG9cGiPljUBy96Ln4BR01i_g</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>AHMED, MAAZ</creator><creator>KUBOTA-MISHRA, ELIZABETH A.</creator><creator>SILLER, ALEJANDRO F.</creator><creator>DAVIS, ANSLEY E.</creator><creator>MIGACZ, ILIANA</creator><creator>SISLEY, STEPHANIE</creator><creator>FARUQI, JORDANA</creator><creator>SAEED, ZEB I.</creator><creator>AHMED, SARAH</creator><creator>PHILIPSON, LOUIS H.</creator><creator>REDONDO, MARIA J.</creator><creator>BALASUBRAMANYAM, ASHOK</creator><creator>TOSUR, MUSTAFA</creator><creator>STUDY GROUP, RADIANT</creator><general>American Diabetes Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20240614</creationdate><title>1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients</title><author>AHMED, MAAZ ; KUBOTA-MISHRA, ELIZABETH A. ; SILLER, ALEJANDRO F. ; DAVIS, ANSLEY E. ; MIGACZ, ILIANA ; SISLEY, STEPHANIE ; FARUQI, JORDANA ; SAEED, ZEB I. ; AHMED, SARAH ; PHILIPSON, LOUIS H. ; REDONDO, MARIA J. ; BALASUBRAMANYAM, ASHOK ; TOSUR, MUSTAFA ; STUDY GROUP, RADIANT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646-e6ee5223e50b7cb344f6acc58c8cbb1a2b210f0a51588ba1899630ce347f3ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoantibodies</topic><topic>Beta cells</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diagnosis</topic><topic>Electronic medical records</topic><topic>Ketoacidosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AHMED, MAAZ</creatorcontrib><creatorcontrib>KUBOTA-MISHRA, ELIZABETH A.</creatorcontrib><creatorcontrib>SILLER, ALEJANDRO F.</creatorcontrib><creatorcontrib>DAVIS, ANSLEY E.</creatorcontrib><creatorcontrib>MIGACZ, ILIANA</creatorcontrib><creatorcontrib>SISLEY, STEPHANIE</creatorcontrib><creatorcontrib>FARUQI, JORDANA</creatorcontrib><creatorcontrib>SAEED, ZEB I.</creatorcontrib><creatorcontrib>AHMED, SARAH</creatorcontrib><creatorcontrib>PHILIPSON, LOUIS H.</creatorcontrib><creatorcontrib>REDONDO, MARIA J.</creatorcontrib><creatorcontrib>BALASUBRAMANYAM, ASHOK</creatorcontrib><creatorcontrib>TOSUR, MUSTAFA</creatorcontrib><creatorcontrib>STUDY GROUP, RADIANT</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AHMED, MAAZ</au><au>KUBOTA-MISHRA, ELIZABETH A.</au><au>SILLER, ALEJANDRO F.</au><au>DAVIS, ANSLEY E.</au><au>MIGACZ, ILIANA</au><au>SISLEY, STEPHANIE</au><au>FARUQI, JORDANA</au><au>SAEED, ZEB I.</au><au>AHMED, SARAH</au><au>PHILIPSON, LOUIS H.</au><au>REDONDO, MARIA J.</au><au>BALASUBRAMANYAM, ASHOK</au><au>TOSUR, MUSTAFA</au><au>STUDY GROUP, RADIANT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><date>2024-06-14</date><risdate>2024</risdate><volume>73</volume><issue>Supplement_1</issue><spage>1</spage><pages>1-</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Introduction &amp; Objectives: Efficient automated EMR review methods to identify people with atypical diabetes (DM) for research are lacking. We aimed to develop a novel Python-based Expeditious Program for EMR Review (PEPPER) and assess its efficiency. Methods: We extracted the list of 1660 youth (&lt;19 yo) with type 2 DM (T2D) seen between 2019-2022 from EMR to identify candidates with A-β+ (autoantibody negative, preserved β-cell function) Ketosis-prone DM (KPD) for enrollment into Rare and Atypical Diabetes Network (RADIANT). We developed PEPPER to identify diabetic ketoacidosis (DKA) occurrence within 6 months (mo) of diagnosis to prioritize individuals for detailed manual chart review for RADIANT eligibility. We also manually reviewed EMR of 100 youth with T2D to identify DKA occurrence within 6 mo of diagnosis without PEPPER for comparison. Results: PEPPER identified 110 youth with T2D who had DKA within 6 mo of diagnosis. Twenty-one met the RADIANT A-β+ KPD criteria. The time spent to identify those with T2D and DKA was significantly shorter with PEPPER compared to manual review (13.4 ± 3.9 vs. 26.6 ± 9.4 seconds, p&lt;0.001), translating to 6.2 vs. 12.3 hours to review 1660 charts with and without PEPPER. Both methods yielded identical results, confirming PEPPER’s accuracy. Conclusion: We developed a novel, efficient and reliable EMR review method that could be used on large cohorts to identify research candidates.</abstract><cop>New York</cop><pub>American Diabetes Association</pub><doi>10.2337/db24-1294-P</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2024-06, Vol.73 (Supplement_1), p.1
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_journals_3111275656
source EZB-FREE-00999 freely available EZB journals
subjects Autoantibodies
Beta cells
Diabetes
Diabetes mellitus
Diagnosis
Electronic medical records
Ketoacidosis
title 1294-P: A Novel Electronic Medical Record (EMR) Search Method to Identify Atypical Diabetes Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1294-P:%20A%20Novel%20Electronic%20Medical%20Record%20(EMR)%20Search%20Method%20to%20Identify%20Atypical%20Diabetes%20Patients&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=AHMED,%20MAAZ&rft.date=2024-06-14&rft.volume=73&rft.issue=Supplement_1&rft.spage=1&rft.pages=1-&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db24-1294-P&rft_dat=%3Cproquest_cross%3E3111275656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111275656&rft_id=info:pmid/&rfr_iscdi=true