Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes

Acid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-09, Vol.14 (33), p.n/a
Hauptverfasser: Bai, Yu, Xiao, Min, Wang, Chengxin, Wang, Shuanjin, Meng, Yuezhong, Miyatake, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced energy materials
container_volume 14
creator Bai, Yu
Xiao, Min
Wang, Chengxin
Wang, Shuanjin
Meng, Yuezhong
Miyatake, Kenji
description Acid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two‐phase interface, in a defect‐free polyphenylene ionomer (SPP‐QP) with excellent integrity are performed. SPP‐QP serves as a fortifying agent with an enhanced microphase‐separation ability within PA/PBI‐based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA‐rich and PA‐poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP‐QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA. This study highlights the interfacial issues and mechanism of micro‐phase separation in acid‐base composite ion exchange membranes. The blended polymers undergo chemical self‐assembly driven by intermolecular interactions, followed by different PA swelling behavior that leads to the formation of PA‐rich and PA‐poor regions. A robust interface, resistant to PA‐induced degradation, is necessary for the formation of microphase‐separated structures.
doi_str_mv 10.1002/aenm.202400751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111186050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111186050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-2c38b608481717c956ba5d948cf2a5b19da1528d44831e6aa6931f6990e4f3cc3</originalsourceid><addsrcrecordid>eNqFkUFOwzAQRSMEEhWwZW2JdYsdO2myLKVApRaQgHU0cSbUKLGDnQBhxRG4BBfjJLgUwZLZzIz0_xvZPwgOGR0xSsNjQF2PQhoKSscR2woGLGZiGCeCbv_OPNwNDpx7oL5Eyijng-Dj2lR9s0LdV6iRzI02NVoCjgA5M7ZVpfKrKclSSWuaFTgkN9iAhVYZTZQmF-p-VfVkanTRyVY9IQFdkNPOQl4hWeNz1K-qVgW8mgo_395PPKT49vnlFusGPa2zXmxN66GzF7kCfY9kiXVuQaPbD3ZKqBwe_PS94O5sdju9GC6uzufTyWIo_dPZMJQ8yWOaiISN2VimUZxDVKQikWUIUc7SAlgUJoUQCWcYA8QpZ2WcphRFyaXke8HRhttY89iha7MH01ntT2ac-UpiGlGvGm1U_kecs1hmjVU12D5jNFunka3TyH7T8IZ0Y3hWFfb_qLPJ7HL55_0CGyeSvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111186050</pqid></control><display><type>article</type><title>Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bai, Yu ; Xiao, Min ; Wang, Chengxin ; Wang, Shuanjin ; Meng, Yuezhong ; Miyatake, Kenji</creator><creatorcontrib>Bai, Yu ; Xiao, Min ; Wang, Chengxin ; Wang, Shuanjin ; Meng, Yuezhong ; Miyatake, Kenji</creatorcontrib><description>Acid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two‐phase interface, in a defect‐free polyphenylene ionomer (SPP‐QP) with excellent integrity are performed. SPP‐QP serves as a fortifying agent with an enhanced microphase‐separation ability within PA/PBI‐based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA‐rich and PA‐poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP‐QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA. This study highlights the interfacial issues and mechanism of micro‐phase separation in acid‐base composite ion exchange membranes. The blended polymers undergo chemical self‐assembly driven by intermolecular interactions, followed by different PA swelling behavior that leads to the formation of PA‐rich and PA‐poor regions. A robust interface, resistant to PA‐induced degradation, is necessary for the formation of microphase‐separated structures.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202400751</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Durability ; interface ; ionomer ; Ionomers ; Membranes ; microphase separation ; molecular dynamics simulation ; Polybenzimidazoles ; Protons ; proton‐exchange membrane fuel cell ; Separation</subject><ispartof>Advanced energy materials, 2024-09, Vol.14 (33), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-2c38b608481717c956ba5d948cf2a5b19da1528d44831e6aa6931f6990e4f3cc3</cites><orcidid>0000-0003-2997-9841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202400751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202400751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Xiao, Min</creatorcontrib><creatorcontrib>Wang, Chengxin</creatorcontrib><creatorcontrib>Wang, Shuanjin</creatorcontrib><creatorcontrib>Meng, Yuezhong</creatorcontrib><creatorcontrib>Miyatake, Kenji</creatorcontrib><title>Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes</title><title>Advanced energy materials</title><description>Acid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two‐phase interface, in a defect‐free polyphenylene ionomer (SPP‐QP) with excellent integrity are performed. SPP‐QP serves as a fortifying agent with an enhanced microphase‐separation ability within PA/PBI‐based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA‐rich and PA‐poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP‐QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA. This study highlights the interfacial issues and mechanism of micro‐phase separation in acid‐base composite ion exchange membranes. The blended polymers undergo chemical self‐assembly driven by intermolecular interactions, followed by different PA swelling behavior that leads to the formation of PA‐rich and PA‐poor regions. A robust interface, resistant to PA‐induced degradation, is necessary for the formation of microphase‐separated structures.</description><subject>Durability</subject><subject>interface</subject><subject>ionomer</subject><subject>Ionomers</subject><subject>Membranes</subject><subject>microphase separation</subject><subject>molecular dynamics simulation</subject><subject>Polybenzimidazoles</subject><subject>Protons</subject><subject>proton‐exchange membrane fuel cell</subject><subject>Separation</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUFOwzAQRSMEEhWwZW2JdYsdO2myLKVApRaQgHU0cSbUKLGDnQBhxRG4BBfjJLgUwZLZzIz0_xvZPwgOGR0xSsNjQF2PQhoKSscR2woGLGZiGCeCbv_OPNwNDpx7oL5Eyijng-Dj2lR9s0LdV6iRzI02NVoCjgA5M7ZVpfKrKclSSWuaFTgkN9iAhVYZTZQmF-p-VfVkanTRyVY9IQFdkNPOQl4hWeNz1K-qVgW8mgo_395PPKT49vnlFusGPa2zXmxN66GzF7kCfY9kiXVuQaPbD3ZKqBwe_PS94O5sdju9GC6uzufTyWIo_dPZMJQ8yWOaiISN2VimUZxDVKQikWUIUc7SAlgUJoUQCWcYA8QpZ2WcphRFyaXke8HRhttY89iha7MH01ntT2ac-UpiGlGvGm1U_kecs1hmjVU12D5jNFunka3TyH7T8IZ0Y3hWFfb_qLPJ7HL55_0CGyeSvQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Bai, Yu</creator><creator>Xiao, Min</creator><creator>Wang, Chengxin</creator><creator>Wang, Shuanjin</creator><creator>Meng, Yuezhong</creator><creator>Miyatake, Kenji</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2997-9841</orcidid></search><sort><creationdate>20240901</creationdate><title>Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes</title><author>Bai, Yu ; Xiao, Min ; Wang, Chengxin ; Wang, Shuanjin ; Meng, Yuezhong ; Miyatake, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-2c38b608481717c956ba5d948cf2a5b19da1528d44831e6aa6931f6990e4f3cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Durability</topic><topic>interface</topic><topic>ionomer</topic><topic>Ionomers</topic><topic>Membranes</topic><topic>microphase separation</topic><topic>molecular dynamics simulation</topic><topic>Polybenzimidazoles</topic><topic>Protons</topic><topic>proton‐exchange membrane fuel cell</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Xiao, Min</creatorcontrib><creatorcontrib>Wang, Chengxin</creatorcontrib><creatorcontrib>Wang, Shuanjin</creatorcontrib><creatorcontrib>Meng, Yuezhong</creatorcontrib><creatorcontrib>Miyatake, Kenji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yu</au><au>Xiao, Min</au><au>Wang, Chengxin</au><au>Wang, Shuanjin</au><au>Meng, Yuezhong</au><au>Miyatake, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes</atitle><jtitle>Advanced energy materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>33</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Acid‐functionalized polymers enhance the performance of phosphoric‐acid‐doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA‐dependent proton‐exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two‐phase interface, in a defect‐free polyphenylene ionomer (SPP‐QP) with excellent integrity are performed. SPP‐QP serves as a fortifying agent with an enhanced microphase‐separation ability within PA/PBI‐based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA‐rich and PA‐poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP‐QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA. This study highlights the interfacial issues and mechanism of micro‐phase separation in acid‐base composite ion exchange membranes. The blended polymers undergo chemical self‐assembly driven by intermolecular interactions, followed by different PA swelling behavior that leads to the formation of PA‐rich and PA‐poor regions. A robust interface, resistant to PA‐induced degradation, is necessary for the formation of microphase‐separated structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202400751</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2997-9841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-09, Vol.14 (33), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3111186050
source Wiley Online Library Journals Frontfile Complete
subjects Durability
interface
ionomer
Ionomers
Membranes
microphase separation
molecular dynamics simulation
Polybenzimidazoles
Protons
proton‐exchange membrane fuel cell
Separation
title Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole‐Based High‐Temperature Proton Exchange Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyphenylene%20Ionomer%20as%20a%20Fortifier%20of%20Microphase%20Separation%20in%20Highly%20Conductive%20and%20Durable%20Polybenzimidazole%E2%80%90Based%20High%E2%80%90Temperature%20Proton%20Exchange%20Membranes&rft.jtitle=Advanced%20energy%20materials&rft.au=Bai,%20Yu&rft.date=2024-09-01&rft.volume=14&rft.issue=33&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202400751&rft_dat=%3Cproquest_cross%3E3111186050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111186050&rft_id=info:pmid/&rfr_iscdi=true