RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs

The purpose of the present paper is to introduce recursive methods for constructing simple t -designs, s -resolvable t -designs, and large sets of t -designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024, Vol.92 (11), p.3503-3514
1. Verfasser: Trung, Tran van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3514
container_issue 11
container_start_page 3503
container_title Designs, codes, and cryptography
container_volume 92
creator Trung, Tran van
description The purpose of the present paper is to introduce recursive methods for constructing simple t -designs, s -resolvable t -designs, and large sets of t -designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t -designs, t -designs with s -resolutions and large sets of t -designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all N > 1 there is a large set L S [ N ] ( t , t + 1 , t + N · ℓ ( t ) ) , where ℓ ( t ) = ∏ i = 1 t λ ( i ) · λ ∗ ( i ) , λ ( t ) = lcm ( t m | m = 1 , 2 , … , t ) and λ ∗ ( t ) = lcm ( 1 , 2 , … , t + 1 ) , we obtain the following statement. If ( t + 2 ) is composite, then there is a large set L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for all N > 1 . If ( t + 2 ) is prime, then there is an L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for any N with gcd ( t + 2 , N ) = 1 .
doi_str_mv 10.1007/s10623-024-01448-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3111184009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111184009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1150-35787aa0c398a943db37c12da9841ee973e68e5223616b9d477261cdce09ad253</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkt0k3sq6aqEglPUc0iQtLXW3JlvBf290BW_OZWaY997AR8g1wi0CyLuEUDFOgQkKKISicEImWEpOZamqUzIBzUqKwNg5uUhpBwDIgU3IfNm0y1ndNg_FbNnO60VzX9R9l4Z4dMM2D8W6j8VAfUjbTd5s54tEY0j9_sOu9uHvdEnO1nafwtVvn5LXx6atn-ni5WlezxbUIZZAeSmVtBYc18pqwf2KS4fMW60EhqAlD5UKJWO8wmqlvZCSVei8C6CtZyWfkpsx9xD792NIg9n1x9jll4ZjLiUAdFaxUeVin1IMa3OI2zcbPw2C-UZmRmQmIzM_yAxkEx9NKYu7TYh_0f-4vgBy4muE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111184009</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs</title><source>SpringerLink Journals</source><creator>Trung, Tran van</creator><creatorcontrib>Trung, Tran van</creatorcontrib><description>The purpose of the present paper is to introduce recursive methods for constructing simple t -designs, s -resolvable t -designs, and large sets of t -designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t -designs, t -designs with s -resolutions and large sets of t -designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all N &gt; 1 there is a large set L S [ N ] ( t , t + 1 , t + N · ℓ ( t ) ) , where ℓ ( t ) = ∏ i = 1 t λ ( i ) · λ ∗ ( i ) , λ ( t ) = lcm ( t m | m = 1 , 2 , … , t ) and λ ∗ ( t ) = lcm ( 1 , 2 , … , t + 1 ) , we obtain the following statement. If ( t + 2 ) is composite, then there is a large set L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for all N &gt; 1 . If ( t + 2 ) is prime, then there is an L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for any N with gcd ( t + 2 , N ) = 1 .</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-024-01448-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Infinite series ; Recursive methods</subject><ispartof>Designs, codes, and cryptography, 2024, Vol.92 (11), p.3503-3514</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1150-35787aa0c398a943db37c12da9841ee973e68e5223616b9d477261cdce09ad253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-024-01448-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-024-01448-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Trung, Tran van</creatorcontrib><title>RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>The purpose of the present paper is to introduce recursive methods for constructing simple t -designs, s -resolvable t -designs, and large sets of t -designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t -designs, t -designs with s -resolutions and large sets of t -designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all N &gt; 1 there is a large set L S [ N ] ( t , t + 1 , t + N · ℓ ( t ) ) , where ℓ ( t ) = ∏ i = 1 t λ ( i ) · λ ∗ ( i ) , λ ( t ) = lcm ( t m | m = 1 , 2 , … , t ) and λ ∗ ( t ) = lcm ( 1 , 2 , … , t + 1 ) , we obtain the following statement. If ( t + 2 ) is composite, then there is a large set L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for all N &gt; 1 . If ( t + 2 ) is prime, then there is an L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for any N with gcd ( t + 2 , N ) = 1 .</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Infinite series</subject><subject>Recursive methods</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMkt0k3sq6aqEglPUc0iQtLXW3JlvBf290BW_OZWaY997AR8g1wi0CyLuEUDFOgQkKKISicEImWEpOZamqUzIBzUqKwNg5uUhpBwDIgU3IfNm0y1ndNg_FbNnO60VzX9R9l4Z4dMM2D8W6j8VAfUjbTd5s54tEY0j9_sOu9uHvdEnO1nafwtVvn5LXx6atn-ni5WlezxbUIZZAeSmVtBYc18pqwf2KS4fMW60EhqAlD5UKJWO8wmqlvZCSVei8C6CtZyWfkpsx9xD792NIg9n1x9jll4ZjLiUAdFaxUeVin1IMa3OI2zcbPw2C-UZmRmQmIzM_yAxkEx9NKYu7TYh_0f-4vgBy4muE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Trung, Tran van</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs</title><author>Trung, Tran van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1150-35787aa0c398a943db37c12da9841ee973e68e5223616b9d477261cdce09ad253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Infinite series</topic><topic>Recursive methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trung, Tran van</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trung, Tran van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024</date><risdate>2024</risdate><volume>92</volume><issue>11</issue><spage>3503</spage><epage>3514</epage><pages>3503-3514</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>The purpose of the present paper is to introduce recursive methods for constructing simple t -designs, s -resolvable t -designs, and large sets of t -designs. The results turn out to be very effective for finding these objects. In particular, they reveal a fundamental property of the considered designs. Consequently, many new infinite series of simple t -designs, t -designs with s -resolutions and large sets of t -designs can be derived from the new constructions. For example, by starting with an important result of Teirlinck stating that for every natural number t and for all N &gt; 1 there is a large set L S [ N ] ( t , t + 1 , t + N · ℓ ( t ) ) , where ℓ ( t ) = ∏ i = 1 t λ ( i ) · λ ∗ ( i ) , λ ( t ) = lcm ( t m | m = 1 , 2 , … , t ) and λ ∗ ( t ) = lcm ( 1 , 2 , … , t + 1 ) , we obtain the following statement. If ( t + 2 ) is composite, then there is a large set L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for all N &gt; 1 . If ( t + 2 ) is prime, then there is an L S [ N ] ( t , t + 2 , t + 1 + N · ℓ ( t ) ) for any N with gcd ( t + 2 , N ) = 1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-024-01448-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2024, Vol.92 (11), p.3503-3514
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_3111184009
source SpringerLink Journals
subjects Coding and Information Theory
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Infinite series
Recursive methods
title RETRACTED ARTICLE: Constructions for t-designs and s-resolvable t-designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Constructions%20for%20t-designs%20and%20s-resolvable%20t-designs&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Trung,%20Tran%20van&rft.date=2024&rft.volume=92&rft.issue=11&rft.spage=3503&rft.epage=3514&rft.pages=3503-3514&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-024-01448-0&rft_dat=%3Cproquest_cross%3E3111184009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111184009&rft_id=info:pmid/&rfr_iscdi=true