Large circuit models: opportunities and challenges
Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text,...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2024-10, Vol.67 (10), p.200402, Article 200402 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 200402 |
container_title | Science China. Information sciences |
container_volume | 67 |
creator | Chen, Lei Chen, Yiqi Chu, Zhufei Fang, Wenji Ho, Tsung-Yi Huang, Ru Huang, Yu Khan, Sadaf Li, Min Li, Xingquan Li, Yu Liang, Yun Liu, Jinwei Liu, Yi Lin, Yibo Luo, Guojie Pan, Hongyang Shi, Zhengyuan Sun, Guangyu Tsaras, Dimitrios Wang, Runsheng Wang, Ziyi Wei, Xinming Xie, Zhiyao Xu, Qiang Xue, Chenhao Yan, Junchi Yang, Jun Yu, Bei Yuan, Mingxuan Young, Evangeline F. Y. Zeng, Xuan Zhang, Haoyi Zhang, Zuodong Zhao, Yuxiang Zhen, Hui-Ling Zheng, Ziyang Zhu, Binwu Zhu, Keren Zou, Sunan |
description | Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities. |
doi_str_mv | 10.1007/s11432-024-4155-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110811449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110811449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgsu4P8FbwHH2v-Wq8yaKuUPCi4C2kabp26bY1aQ_-e7NU8ORc3jvMzHszhFwj3CKAuouInOUUck45CkHVGVlhITVFjfo87VJxqhj7uCSbGA-QwBjkqliRvLRh7zPXBje3U3Ycat_F-2wYxyFMc99OrY-Z7evMfdqu8_3exyty0dgu-s3vXJP3p8e37Y6Wr88v24eSOtTFRNFxid7aSiWgtJpxULWWtgENTGheifS8q1FpKQrfVExyX4CTznIHQrE1uVl8xzB8zT5O5jDMoU8nDUOEIoXmOrFwYbkwxBh8Y8bQHm34Ngjm1I5Z2jGpHXNqx5yc80UTEzdFCn_O_4t-AJS7ZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110811449</pqid></control><display><type>article</type><title>Large circuit models: opportunities and challenges</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</creator><creatorcontrib>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</creatorcontrib><description>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-024-4155-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial intelligence ; Automation ; Circuit design ; Computer engineering ; Computer Science ; Deep learning ; Design ; Design optimization ; Electronic circuits ; Electronic design automation ; Electronic systems ; Information Systems and Communication Service ; Integrated circuits ; Machine learning ; Optimization ; Position Paper ; Semantics</subject><ispartof>Science China. Information sciences, 2024-10, Vol.67 (10), p.200402, Article 200402</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-024-4155-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11432-024-4155-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chen, Yiqi</creatorcontrib><creatorcontrib>Chu, Zhufei</creatorcontrib><creatorcontrib>Fang, Wenji</creatorcontrib><creatorcontrib>Ho, Tsung-Yi</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Khan, Sadaf</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xingquan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liang, Yun</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><creatorcontrib>Luo, Guojie</creatorcontrib><creatorcontrib>Pan, Hongyang</creatorcontrib><creatorcontrib>Shi, Zhengyuan</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Tsaras, Dimitrios</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Wei, Xinming</creatorcontrib><creatorcontrib>Xie, Zhiyao</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Xue, Chenhao</creatorcontrib><creatorcontrib>Yan, Junchi</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Yuan, Mingxuan</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhang, Zuodong</creatorcontrib><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Zhen, Hui-Ling</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Zhu, Binwu</creatorcontrib><creatorcontrib>Zhu, Keren</creatorcontrib><creatorcontrib>Zou, Sunan</creatorcontrib><title>Large circuit models: opportunities and challenges</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Circuit design</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electronic circuits</subject><subject>Electronic design automation</subject><subject>Electronic systems</subject><subject>Information Systems and Communication Service</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Position Paper</subject><subject>Semantics</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UE1LxDAUDKLgsu4P8FbwHH2v-Wq8yaKuUPCi4C2kabp26bY1aQ_-e7NU8ORc3jvMzHszhFwj3CKAuouInOUUck45CkHVGVlhITVFjfo87VJxqhj7uCSbGA-QwBjkqliRvLRh7zPXBje3U3Ycat_F-2wYxyFMc99OrY-Z7evMfdqu8_3exyty0dgu-s3vXJP3p8e37Y6Wr88v24eSOtTFRNFxid7aSiWgtJpxULWWtgENTGheifS8q1FpKQrfVExyX4CTznIHQrE1uVl8xzB8zT5O5jDMoU8nDUOEIoXmOrFwYbkwxBh8Y8bQHm34Ngjm1I5Z2jGpHXNqx5yc80UTEzdFCn_O_4t-AJS7ZVw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Lei</creator><creator>Chen, Yiqi</creator><creator>Chu, Zhufei</creator><creator>Fang, Wenji</creator><creator>Ho, Tsung-Yi</creator><creator>Huang, Ru</creator><creator>Huang, Yu</creator><creator>Khan, Sadaf</creator><creator>Li, Min</creator><creator>Li, Xingquan</creator><creator>Li, Yu</creator><creator>Liang, Yun</creator><creator>Liu, Jinwei</creator><creator>Liu, Yi</creator><creator>Lin, Yibo</creator><creator>Luo, Guojie</creator><creator>Pan, Hongyang</creator><creator>Shi, Zhengyuan</creator><creator>Sun, Guangyu</creator><creator>Tsaras, Dimitrios</creator><creator>Wang, Runsheng</creator><creator>Wang, Ziyi</creator><creator>Wei, Xinming</creator><creator>Xie, Zhiyao</creator><creator>Xu, Qiang</creator><creator>Xue, Chenhao</creator><creator>Yan, Junchi</creator><creator>Yang, Jun</creator><creator>Yu, Bei</creator><creator>Yuan, Mingxuan</creator><creator>Young, Evangeline F. Y.</creator><creator>Zeng, Xuan</creator><creator>Zhang, Haoyi</creator><creator>Zhang, Zuodong</creator><creator>Zhao, Yuxiang</creator><creator>Zhen, Hui-Ling</creator><creator>Zheng, Ziyang</creator><creator>Zhu, Binwu</creator><creator>Zhu, Keren</creator><creator>Zou, Sunan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241001</creationdate><title>Large circuit models: opportunities and challenges</title><author>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Circuit design</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electronic circuits</topic><topic>Electronic design automation</topic><topic>Electronic systems</topic><topic>Information Systems and Communication Service</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Position Paper</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chen, Yiqi</creatorcontrib><creatorcontrib>Chu, Zhufei</creatorcontrib><creatorcontrib>Fang, Wenji</creatorcontrib><creatorcontrib>Ho, Tsung-Yi</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Khan, Sadaf</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xingquan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liang, Yun</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><creatorcontrib>Luo, Guojie</creatorcontrib><creatorcontrib>Pan, Hongyang</creatorcontrib><creatorcontrib>Shi, Zhengyuan</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Tsaras, Dimitrios</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Wei, Xinming</creatorcontrib><creatorcontrib>Xie, Zhiyao</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Xue, Chenhao</creatorcontrib><creatorcontrib>Yan, Junchi</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Yuan, Mingxuan</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhang, Zuodong</creatorcontrib><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Zhen, Hui-Ling</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Zhu, Binwu</creatorcontrib><creatorcontrib>Zhu, Keren</creatorcontrib><creatorcontrib>Zou, Sunan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Chen, Yiqi</au><au>Chu, Zhufei</au><au>Fang, Wenji</au><au>Ho, Tsung-Yi</au><au>Huang, Ru</au><au>Huang, Yu</au><au>Khan, Sadaf</au><au>Li, Min</au><au>Li, Xingquan</au><au>Li, Yu</au><au>Liang, Yun</au><au>Liu, Jinwei</au><au>Liu, Yi</au><au>Lin, Yibo</au><au>Luo, Guojie</au><au>Pan, Hongyang</au><au>Shi, Zhengyuan</au><au>Sun, Guangyu</au><au>Tsaras, Dimitrios</au><au>Wang, Runsheng</au><au>Wang, Ziyi</au><au>Wei, Xinming</au><au>Xie, Zhiyao</au><au>Xu, Qiang</au><au>Xue, Chenhao</au><au>Yan, Junchi</au><au>Yang, Jun</au><au>Yu, Bei</au><au>Yuan, Mingxuan</au><au>Young, Evangeline F. Y.</au><au>Zeng, Xuan</au><au>Zhang, Haoyi</au><au>Zhang, Zuodong</au><au>Zhao, Yuxiang</au><au>Zhen, Hui-Ling</au><au>Zheng, Ziyang</au><au>Zhu, Binwu</au><au>Zhu, Keren</au><au>Zou, Sunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large circuit models: opportunities and challenges</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>67</volume><issue>10</issue><spage>200402</spage><pages>200402-</pages><artnum>200402</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-024-4155-7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2024-10, Vol.67 (10), p.200402, Article 200402 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_journals_3110811449 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Artificial intelligence Automation Circuit design Computer engineering Computer Science Deep learning Design Design optimization Electronic circuits Electronic design automation Electronic systems Information Systems and Communication Service Integrated circuits Machine learning Optimization Position Paper Semantics |
title | Large circuit models: opportunities and challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20circuit%20models:%20opportunities%20and%20challenges&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Chen,%20Lei&rft.date=2024-10-01&rft.volume=67&rft.issue=10&rft.spage=200402&rft.pages=200402-&rft.artnum=200402&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-024-4155-7&rft_dat=%3Cproquest_cross%3E3110811449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110811449&rft_id=info:pmid/&rfr_iscdi=true |