Large circuit models: opportunities and challenges

Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2024-10, Vol.67 (10), p.200402, Article 200402
Hauptverfasser: Chen, Lei, Chen, Yiqi, Chu, Zhufei, Fang, Wenji, Ho, Tsung-Yi, Huang, Ru, Huang, Yu, Khan, Sadaf, Li, Min, Li, Xingquan, Li, Yu, Liang, Yun, Liu, Jinwei, Liu, Yi, Lin, Yibo, Luo, Guojie, Pan, Hongyang, Shi, Zhengyuan, Sun, Guangyu, Tsaras, Dimitrios, Wang, Runsheng, Wang, Ziyi, Wei, Xinming, Xie, Zhiyao, Xu, Qiang, Xue, Chenhao, Yan, Junchi, Yang, Jun, Yu, Bei, Yuan, Mingxuan, Young, Evangeline F. Y., Zeng, Xuan, Zhang, Haoyi, Zhang, Zuodong, Zhao, Yuxiang, Zhen, Hui-Ling, Zheng, Ziyang, Zhu, Binwu, Zhu, Keren, Zou, Sunan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 200402
container_title Science China. Information sciences
container_volume 67
creator Chen, Lei
Chen, Yiqi
Chu, Zhufei
Fang, Wenji
Ho, Tsung-Yi
Huang, Ru
Huang, Yu
Khan, Sadaf
Li, Min
Li, Xingquan
Li, Yu
Liang, Yun
Liu, Jinwei
Liu, Yi
Lin, Yibo
Luo, Guojie
Pan, Hongyang
Shi, Zhengyuan
Sun, Guangyu
Tsaras, Dimitrios
Wang, Runsheng
Wang, Ziyi
Wei, Xinming
Xie, Zhiyao
Xu, Qiang
Xue, Chenhao
Yan, Junchi
Yang, Jun
Yu, Bei
Yuan, Mingxuan
Young, Evangeline F. Y.
Zeng, Xuan
Zhang, Haoyi
Zhang, Zuodong
Zhao, Yuxiang
Zhen, Hui-Ling
Zheng, Ziyang
Zhu, Binwu
Zhu, Keren
Zou, Sunan
description Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.
doi_str_mv 10.1007/s11432-024-4155-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110811449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110811449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgsu4P8FbwHH2v-Wq8yaKuUPCi4C2kabp26bY1aQ_-e7NU8ORc3jvMzHszhFwj3CKAuouInOUUck45CkHVGVlhITVFjfo87VJxqhj7uCSbGA-QwBjkqliRvLRh7zPXBje3U3Ycat_F-2wYxyFMc99OrY-Z7evMfdqu8_3exyty0dgu-s3vXJP3p8e37Y6Wr88v24eSOtTFRNFxid7aSiWgtJpxULWWtgENTGheifS8q1FpKQrfVExyX4CTznIHQrE1uVl8xzB8zT5O5jDMoU8nDUOEIoXmOrFwYbkwxBh8Y8bQHm34Ngjm1I5Z2jGpHXNqx5yc80UTEzdFCn_O_4t-AJS7ZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110811449</pqid></control><display><type>article</type><title>Large circuit models: opportunities and challenges</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</creator><creatorcontrib>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</creatorcontrib><description>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-024-4155-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial intelligence ; Automation ; Circuit design ; Computer engineering ; Computer Science ; Deep learning ; Design ; Design optimization ; Electronic circuits ; Electronic design automation ; Electronic systems ; Information Systems and Communication Service ; Integrated circuits ; Machine learning ; Optimization ; Position Paper ; Semantics</subject><ispartof>Science China. Information sciences, 2024-10, Vol.67 (10), p.200402, Article 200402</ispartof><rights>The Author(s) 2024. corrected publication 2024</rights><rights>The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-024-4155-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11432-024-4155-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chen, Yiqi</creatorcontrib><creatorcontrib>Chu, Zhufei</creatorcontrib><creatorcontrib>Fang, Wenji</creatorcontrib><creatorcontrib>Ho, Tsung-Yi</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Khan, Sadaf</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xingquan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liang, Yun</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><creatorcontrib>Luo, Guojie</creatorcontrib><creatorcontrib>Pan, Hongyang</creatorcontrib><creatorcontrib>Shi, Zhengyuan</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Tsaras, Dimitrios</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Wei, Xinming</creatorcontrib><creatorcontrib>Xie, Zhiyao</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Xue, Chenhao</creatorcontrib><creatorcontrib>Yan, Junchi</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Yuan, Mingxuan</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhang, Zuodong</creatorcontrib><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Zhen, Hui-Ling</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Zhu, Binwu</creatorcontrib><creatorcontrib>Zhu, Keren</creatorcontrib><creatorcontrib>Zou, Sunan</creatorcontrib><title>Large circuit models: opportunities and challenges</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Circuit design</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electronic circuits</subject><subject>Electronic design automation</subject><subject>Electronic systems</subject><subject>Information Systems and Communication Service</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Position Paper</subject><subject>Semantics</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UE1LxDAUDKLgsu4P8FbwHH2v-Wq8yaKuUPCi4C2kabp26bY1aQ_-e7NU8ORc3jvMzHszhFwj3CKAuouInOUUck45CkHVGVlhITVFjfo87VJxqhj7uCSbGA-QwBjkqliRvLRh7zPXBje3U3Ycat_F-2wYxyFMc99OrY-Z7evMfdqu8_3exyty0dgu-s3vXJP3p8e37Y6Wr88v24eSOtTFRNFxid7aSiWgtJpxULWWtgENTGheifS8q1FpKQrfVExyX4CTznIHQrE1uVl8xzB8zT5O5jDMoU8nDUOEIoXmOrFwYbkwxBh8Y8bQHm34Ngjm1I5Z2jGpHXNqx5yc80UTEzdFCn_O_4t-AJS7ZVw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Lei</creator><creator>Chen, Yiqi</creator><creator>Chu, Zhufei</creator><creator>Fang, Wenji</creator><creator>Ho, Tsung-Yi</creator><creator>Huang, Ru</creator><creator>Huang, Yu</creator><creator>Khan, Sadaf</creator><creator>Li, Min</creator><creator>Li, Xingquan</creator><creator>Li, Yu</creator><creator>Liang, Yun</creator><creator>Liu, Jinwei</creator><creator>Liu, Yi</creator><creator>Lin, Yibo</creator><creator>Luo, Guojie</creator><creator>Pan, Hongyang</creator><creator>Shi, Zhengyuan</creator><creator>Sun, Guangyu</creator><creator>Tsaras, Dimitrios</creator><creator>Wang, Runsheng</creator><creator>Wang, Ziyi</creator><creator>Wei, Xinming</creator><creator>Xie, Zhiyao</creator><creator>Xu, Qiang</creator><creator>Xue, Chenhao</creator><creator>Yan, Junchi</creator><creator>Yang, Jun</creator><creator>Yu, Bei</creator><creator>Yuan, Mingxuan</creator><creator>Young, Evangeline F. Y.</creator><creator>Zeng, Xuan</creator><creator>Zhang, Haoyi</creator><creator>Zhang, Zuodong</creator><creator>Zhao, Yuxiang</creator><creator>Zhen, Hui-Ling</creator><creator>Zheng, Ziyang</creator><creator>Zhu, Binwu</creator><creator>Zhu, Keren</creator><creator>Zou, Sunan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241001</creationdate><title>Large circuit models: opportunities and challenges</title><author>Chen, Lei ; Chen, Yiqi ; Chu, Zhufei ; Fang, Wenji ; Ho, Tsung-Yi ; Huang, Ru ; Huang, Yu ; Khan, Sadaf ; Li, Min ; Li, Xingquan ; Li, Yu ; Liang, Yun ; Liu, Jinwei ; Liu, Yi ; Lin, Yibo ; Luo, Guojie ; Pan, Hongyang ; Shi, Zhengyuan ; Sun, Guangyu ; Tsaras, Dimitrios ; Wang, Runsheng ; Wang, Ziyi ; Wei, Xinming ; Xie, Zhiyao ; Xu, Qiang ; Xue, Chenhao ; Yan, Junchi ; Yang, Jun ; Yu, Bei ; Yuan, Mingxuan ; Young, Evangeline F. Y. ; Zeng, Xuan ; Zhang, Haoyi ; Zhang, Zuodong ; Zhao, Yuxiang ; Zhen, Hui-Ling ; Zheng, Ziyang ; Zhu, Binwu ; Zhu, Keren ; Zou, Sunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1c461eaab777716a93407d96af0903594b5100cd179658efb364e80c6ca4c0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Circuit design</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electronic circuits</topic><topic>Electronic design automation</topic><topic>Electronic systems</topic><topic>Information Systems and Communication Service</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Position Paper</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Chen, Yiqi</creatorcontrib><creatorcontrib>Chu, Zhufei</creatorcontrib><creatorcontrib>Fang, Wenji</creatorcontrib><creatorcontrib>Ho, Tsung-Yi</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Khan, Sadaf</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xingquan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liang, Yun</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><creatorcontrib>Luo, Guojie</creatorcontrib><creatorcontrib>Pan, Hongyang</creatorcontrib><creatorcontrib>Shi, Zhengyuan</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Tsaras, Dimitrios</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Wei, Xinming</creatorcontrib><creatorcontrib>Xie, Zhiyao</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Xue, Chenhao</creatorcontrib><creatorcontrib>Yan, Junchi</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Yu, Bei</creatorcontrib><creatorcontrib>Yuan, Mingxuan</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhang, Zuodong</creatorcontrib><creatorcontrib>Zhao, Yuxiang</creatorcontrib><creatorcontrib>Zhen, Hui-Ling</creatorcontrib><creatorcontrib>Zheng, Ziyang</creatorcontrib><creatorcontrib>Zhu, Binwu</creatorcontrib><creatorcontrib>Zhu, Keren</creatorcontrib><creatorcontrib>Zou, Sunan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lei</au><au>Chen, Yiqi</au><au>Chu, Zhufei</au><au>Fang, Wenji</au><au>Ho, Tsung-Yi</au><au>Huang, Ru</au><au>Huang, Yu</au><au>Khan, Sadaf</au><au>Li, Min</au><au>Li, Xingquan</au><au>Li, Yu</au><au>Liang, Yun</au><au>Liu, Jinwei</au><au>Liu, Yi</au><au>Lin, Yibo</au><au>Luo, Guojie</au><au>Pan, Hongyang</au><au>Shi, Zhengyuan</au><au>Sun, Guangyu</au><au>Tsaras, Dimitrios</au><au>Wang, Runsheng</au><au>Wang, Ziyi</au><au>Wei, Xinming</au><au>Xie, Zhiyao</au><au>Xu, Qiang</au><au>Xue, Chenhao</au><au>Yan, Junchi</au><au>Yang, Jun</au><au>Yu, Bei</au><au>Yuan, Mingxuan</au><au>Young, Evangeline F. Y.</au><au>Zeng, Xuan</au><au>Zhang, Haoyi</au><au>Zhang, Zuodong</au><au>Zhao, Yuxiang</au><au>Zhen, Hui-Ling</au><au>Zheng, Ziyang</au><au>Zhu, Binwu</au><au>Zhu, Keren</au><au>Zou, Sunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large circuit models: opportunities and challenges</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>67</volume><issue>10</issue><spage>200402</spage><pages>200402-</pages><artnum>200402</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Within the electronic design automation (EDA) domain, artificial intelligence (AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level (RTL) designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems’ capabilities.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-024-4155-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2024-10, Vol.67 (10), p.200402, Article 200402
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_3110811449
source SpringerLink Journals; Alma/SFX Local Collection
subjects Artificial intelligence
Automation
Circuit design
Computer engineering
Computer Science
Deep learning
Design
Design optimization
Electronic circuits
Electronic design automation
Electronic systems
Information Systems and Communication Service
Integrated circuits
Machine learning
Optimization
Position Paper
Semantics
title Large circuit models: opportunities and challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20circuit%20models:%20opportunities%20and%20challenges&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Chen,%20Lei&rft.date=2024-10-01&rft.volume=67&rft.issue=10&rft.spage=200402&rft.pages=200402-&rft.artnum=200402&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-024-4155-7&rft_dat=%3Cproquest_cross%3E3110811449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110811449&rft_id=info:pmid/&rfr_iscdi=true