Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage
Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2024-09, Vol.151 (12), p.2387-2403 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2403 |
---|---|
container_issue | 12 |
container_start_page | 2387 |
container_title | Transport in porous media |
container_volume | 151 |
creator | Phillips, Tomos Bultreys, Tom Van Stappen, Jeroen Singh, Kamaljit Achuo Dze, Sahyuo Van Offenwert, Stefanie Callow, Ben Borji, Mostafa Boersheim, Erik Clemens Novak, Vladimir Schlepütz, Christian M. Cnudde, Veerle Doster, Florian Busch, Andreas |
description | Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness,
λ
b
≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low
λ
b
fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where
λ
b
≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.
Article Highlights
Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures.
The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood.
Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow. |
doi_str_mv | 10.1007/s11242-024-02117-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110809407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110809407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPAczWvTXMcm3ODgSB6DmmS1o6a1KQd7NvbboI3Dw_P4f_y8PwAuMfoESMknhLGhJEMETYOxiLjF2CGuaAZzim7BDOEc5lRiek1uElpj9AYK9gM1FtftYPzxsFQwV0wuoWLzsV-iA5uXO9iqJ13TX-EwcOtP2jb-Bqu26GxcBm8d6ZvDpO8GuKkvIWh_oTrqM2pYhV143XtbsFVpdvk7n73HHysn9-Xm2z3-rJdLnaZIYz1GacFK6lkmjLDiOVUilzyUgvMsSVIFkwYpytU2pwXllDBq4owi6XVskTW0jl4OPd2MXwPLvVqH4box5OKYowKJBkSo4ucXSaGlKKrVBebLx2PCiM1AVVnoGoEqk5AFR9D9BxK3fSpi3_V_6R-ANaceLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110809407</pqid></control><display><type>article</type><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</creator><creatorcontrib>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</creatorcontrib><description>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness,
λ
b
≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low
λ
b
fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where
λ
b
≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.
Article Highlights
Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures.
The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood.
Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-024-02117-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apertures ; Capillary pressure ; Civil Engineering ; Classical and Continuum Physics ; Constitutive relationships ; Drainage ; Earth and Environmental Science ; Earth Sciences ; Fractal analysis ; Fractal geometry ; Fractures ; Geotechnical Engineering & Applied Earth Sciences ; Heterogeneity ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Leakage ; Modelling ; Multiphase flow ; Percolation ; Porous media ; Roughness ; Synchrotron radiation ; Temporal resolution ; Wetting ; X ray imagery</subject><ispartof>Transport in porous media, 2024-09, Vol.151 (12), p.2387-2403</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</cites><orcidid>0000-0002-3279-5202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-024-02117-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-024-02117-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Phillips, Tomos</creatorcontrib><creatorcontrib>Bultreys, Tom</creatorcontrib><creatorcontrib>Van Stappen, Jeroen</creatorcontrib><creatorcontrib>Singh, Kamaljit</creatorcontrib><creatorcontrib>Achuo Dze, Sahyuo</creatorcontrib><creatorcontrib>Van Offenwert, Stefanie</creatorcontrib><creatorcontrib>Callow, Ben</creatorcontrib><creatorcontrib>Borji, Mostafa</creatorcontrib><creatorcontrib>Boersheim, Erik Clemens</creatorcontrib><creatorcontrib>Novak, Vladimir</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Cnudde, Veerle</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Busch, Andreas</creatorcontrib><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness,
λ
b
≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low
λ
b
fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where
λ
b
≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.
Article Highlights
Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures.
The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood.
Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</description><subject>Apertures</subject><subject>Capillary pressure</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive relationships</subject><subject>Drainage</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractal analysis</subject><subject>Fractal geometry</subject><subject>Fractures</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Heterogeneity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Leakage</subject><subject>Modelling</subject><subject>Multiphase flow</subject><subject>Percolation</subject><subject>Porous media</subject><subject>Roughness</subject><subject>Synchrotron radiation</subject><subject>Temporal resolution</subject><subject>Wetting</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPAczWvTXMcm3ODgSB6DmmS1o6a1KQd7NvbboI3Dw_P4f_y8PwAuMfoESMknhLGhJEMETYOxiLjF2CGuaAZzim7BDOEc5lRiek1uElpj9AYK9gM1FtftYPzxsFQwV0wuoWLzsV-iA5uXO9iqJ13TX-EwcOtP2jb-Bqu26GxcBm8d6ZvDpO8GuKkvIWh_oTrqM2pYhV143XtbsFVpdvk7n73HHysn9-Xm2z3-rJdLnaZIYz1GacFK6lkmjLDiOVUilzyUgvMsSVIFkwYpytU2pwXllDBq4owi6XVskTW0jl4OPd2MXwPLvVqH4box5OKYowKJBkSo4ucXSaGlKKrVBebLx2PCiM1AVVnoGoEqk5AFR9D9BxK3fSpi3_V_6R-ANaceLg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Phillips, Tomos</creator><creator>Bultreys, Tom</creator><creator>Van Stappen, Jeroen</creator><creator>Singh, Kamaljit</creator><creator>Achuo Dze, Sahyuo</creator><creator>Van Offenwert, Stefanie</creator><creator>Callow, Ben</creator><creator>Borji, Mostafa</creator><creator>Boersheim, Erik Clemens</creator><creator>Novak, Vladimir</creator><creator>Schlepütz, Christian M.</creator><creator>Cnudde, Veerle</creator><creator>Doster, Florian</creator><creator>Busch, Andreas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3279-5202</orcidid></search><sort><creationdate>20240901</creationdate><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><author>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apertures</topic><topic>Capillary pressure</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive relationships</topic><topic>Drainage</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractal analysis</topic><topic>Fractal geometry</topic><topic>Fractures</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Heterogeneity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Leakage</topic><topic>Modelling</topic><topic>Multiphase flow</topic><topic>Percolation</topic><topic>Porous media</topic><topic>Roughness</topic><topic>Synchrotron radiation</topic><topic>Temporal resolution</topic><topic>Wetting</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Tomos</creatorcontrib><creatorcontrib>Bultreys, Tom</creatorcontrib><creatorcontrib>Van Stappen, Jeroen</creatorcontrib><creatorcontrib>Singh, Kamaljit</creatorcontrib><creatorcontrib>Achuo Dze, Sahyuo</creatorcontrib><creatorcontrib>Van Offenwert, Stefanie</creatorcontrib><creatorcontrib>Callow, Ben</creatorcontrib><creatorcontrib>Borji, Mostafa</creatorcontrib><creatorcontrib>Boersheim, Erik Clemens</creatorcontrib><creatorcontrib>Novak, Vladimir</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Cnudde, Veerle</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Busch, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Tomos</au><au>Bultreys, Tom</au><au>Van Stappen, Jeroen</au><au>Singh, Kamaljit</au><au>Achuo Dze, Sahyuo</au><au>Van Offenwert, Stefanie</au><au>Callow, Ben</au><au>Borji, Mostafa</au><au>Boersheim, Erik Clemens</au><au>Novak, Vladimir</au><au>Schlepütz, Christian M.</au><au>Cnudde, Veerle</au><au>Doster, Florian</au><au>Busch, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>151</volume><issue>12</issue><spage>2387</spage><epage>2403</epage><pages>2387-2403</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness,
λ
b
≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low
λ
b
fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where
λ
b
≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.
Article Highlights
Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures.
The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood.
Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-024-02117-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3279-5202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2024-09, Vol.151 (12), p.2387-2403 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_3110809407 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apertures Capillary pressure Civil Engineering Classical and Continuum Physics Constitutive relationships Drainage Earth and Environmental Science Earth Sciences Fractal analysis Fractal geometry Fractures Geotechnical Engineering & Applied Earth Sciences Heterogeneity Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Leakage Modelling Multiphase flow Percolation Porous media Roughness Synchrotron radiation Temporal resolution Wetting X ray imagery |
title | Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Local%20Aperture%20Heterogeneity%20on%20Invading%20Fluid%20Connectivity%20During%20Rough%20Fracture%20Drainage&rft.jtitle=Transport%20in%20porous%20media&rft.au=Phillips,%20Tomos&rft.date=2024-09-01&rft.volume=151&rft.issue=12&rft.spage=2387&rft.epage=2403&rft.pages=2387-2403&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-024-02117-5&rft_dat=%3Cproquest_cross%3E3110809407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110809407&rft_id=info:pmid/&rfr_iscdi=true |