Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage

Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2024-09, Vol.151 (12), p.2387-2403
Hauptverfasser: Phillips, Tomos, Bultreys, Tom, Van Stappen, Jeroen, Singh, Kamaljit, Achuo Dze, Sahyuo, Van Offenwert, Stefanie, Callow, Ben, Borji, Mostafa, Boersheim, Erik Clemens, Novak, Vladimir, Schlepütz, Christian M., Cnudde, Veerle, Doster, Florian, Busch, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2403
container_issue 12
container_start_page 2387
container_title Transport in porous media
container_volume 151
creator Phillips, Tomos
Bultreys, Tom
Van Stappen, Jeroen
Singh, Kamaljit
Achuo Dze, Sahyuo
Van Offenwert, Stefanie
Callow, Ben
Borji, Mostafa
Boersheim, Erik Clemens
Novak, Vladimir
Schlepütz, Christian M.
Cnudde, Veerle
Doster, Florian
Busch, Andreas
description Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, λ b  ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low λ b fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where λ b  ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage. Article Highlights Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures. The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood. Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.
doi_str_mv 10.1007/s11242-024-02117-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110809407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110809407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPAczWvTXMcm3ODgSB6DmmS1o6a1KQd7NvbboI3Dw_P4f_y8PwAuMfoESMknhLGhJEMETYOxiLjF2CGuaAZzim7BDOEc5lRiek1uElpj9AYK9gM1FtftYPzxsFQwV0wuoWLzsV-iA5uXO9iqJ13TX-EwcOtP2jb-Bqu26GxcBm8d6ZvDpO8GuKkvIWh_oTrqM2pYhV143XtbsFVpdvk7n73HHysn9-Xm2z3-rJdLnaZIYz1GacFK6lkmjLDiOVUilzyUgvMsSVIFkwYpytU2pwXllDBq4owi6XVskTW0jl4OPd2MXwPLvVqH4box5OKYowKJBkSo4ucXSaGlKKrVBebLx2PCiM1AVVnoGoEqk5AFR9D9BxK3fSpi3_V_6R-ANaceLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110809407</pqid></control><display><type>article</type><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</creator><creatorcontrib>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</creatorcontrib><description>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, λ b  ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low λ b fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where λ b  ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage. Article Highlights Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures. The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood. Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-024-02117-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Apertures ; Capillary pressure ; Civil Engineering ; Classical and Continuum Physics ; Constitutive relationships ; Drainage ; Earth and Environmental Science ; Earth Sciences ; Fractal analysis ; Fractal geometry ; Fractures ; Geotechnical Engineering &amp; Applied Earth Sciences ; Heterogeneity ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Leakage ; Modelling ; Multiphase flow ; Percolation ; Porous media ; Roughness ; Synchrotron radiation ; Temporal resolution ; Wetting ; X ray imagery</subject><ispartof>Transport in porous media, 2024-09, Vol.151 (12), p.2387-2403</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</cites><orcidid>0000-0002-3279-5202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-024-02117-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-024-02117-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Phillips, Tomos</creatorcontrib><creatorcontrib>Bultreys, Tom</creatorcontrib><creatorcontrib>Van Stappen, Jeroen</creatorcontrib><creatorcontrib>Singh, Kamaljit</creatorcontrib><creatorcontrib>Achuo Dze, Sahyuo</creatorcontrib><creatorcontrib>Van Offenwert, Stefanie</creatorcontrib><creatorcontrib>Callow, Ben</creatorcontrib><creatorcontrib>Borji, Mostafa</creatorcontrib><creatorcontrib>Boersheim, Erik Clemens</creatorcontrib><creatorcontrib>Novak, Vladimir</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Cnudde, Veerle</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Busch, Andreas</creatorcontrib><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, λ b  ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low λ b fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where λ b  ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage. Article Highlights Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures. The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood. Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</description><subject>Apertures</subject><subject>Capillary pressure</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive relationships</subject><subject>Drainage</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractal analysis</subject><subject>Fractal geometry</subject><subject>Fractures</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Heterogeneity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Leakage</subject><subject>Modelling</subject><subject>Multiphase flow</subject><subject>Percolation</subject><subject>Porous media</subject><subject>Roughness</subject><subject>Synchrotron radiation</subject><subject>Temporal resolution</subject><subject>Wetting</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPAczWvTXMcm3ODgSB6DmmS1o6a1KQd7NvbboI3Dw_P4f_y8PwAuMfoESMknhLGhJEMETYOxiLjF2CGuaAZzim7BDOEc5lRiek1uElpj9AYK9gM1FtftYPzxsFQwV0wuoWLzsV-iA5uXO9iqJ13TX-EwcOtP2jb-Bqu26GxcBm8d6ZvDpO8GuKkvIWh_oTrqM2pYhV143XtbsFVpdvk7n73HHysn9-Xm2z3-rJdLnaZIYz1GacFK6lkmjLDiOVUilzyUgvMsSVIFkwYpytU2pwXllDBq4owi6XVskTW0jl4OPd2MXwPLvVqH4box5OKYowKJBkSo4ucXSaGlKKrVBebLx2PCiM1AVVnoGoEqk5AFR9D9BxK3fSpi3_V_6R-ANaceLg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Phillips, Tomos</creator><creator>Bultreys, Tom</creator><creator>Van Stappen, Jeroen</creator><creator>Singh, Kamaljit</creator><creator>Achuo Dze, Sahyuo</creator><creator>Van Offenwert, Stefanie</creator><creator>Callow, Ben</creator><creator>Borji, Mostafa</creator><creator>Boersheim, Erik Clemens</creator><creator>Novak, Vladimir</creator><creator>Schlepütz, Christian M.</creator><creator>Cnudde, Veerle</creator><creator>Doster, Florian</creator><creator>Busch, Andreas</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3279-5202</orcidid></search><sort><creationdate>20240901</creationdate><title>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</title><author>Phillips, Tomos ; Bultreys, Tom ; Van Stappen, Jeroen ; Singh, Kamaljit ; Achuo Dze, Sahyuo ; Van Offenwert, Stefanie ; Callow, Ben ; Borji, Mostafa ; Boersheim, Erik Clemens ; Novak, Vladimir ; Schlepütz, Christian M. ; Cnudde, Veerle ; Doster, Florian ; Busch, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5384b394a34c42d5397695ba7151d209847ceaf0bd658d2375ff24d19da9b0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apertures</topic><topic>Capillary pressure</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive relationships</topic><topic>Drainage</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractal analysis</topic><topic>Fractal geometry</topic><topic>Fractures</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Heterogeneity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Leakage</topic><topic>Modelling</topic><topic>Multiphase flow</topic><topic>Percolation</topic><topic>Porous media</topic><topic>Roughness</topic><topic>Synchrotron radiation</topic><topic>Temporal resolution</topic><topic>Wetting</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Tomos</creatorcontrib><creatorcontrib>Bultreys, Tom</creatorcontrib><creatorcontrib>Van Stappen, Jeroen</creatorcontrib><creatorcontrib>Singh, Kamaljit</creatorcontrib><creatorcontrib>Achuo Dze, Sahyuo</creatorcontrib><creatorcontrib>Van Offenwert, Stefanie</creatorcontrib><creatorcontrib>Callow, Ben</creatorcontrib><creatorcontrib>Borji, Mostafa</creatorcontrib><creatorcontrib>Boersheim, Erik Clemens</creatorcontrib><creatorcontrib>Novak, Vladimir</creatorcontrib><creatorcontrib>Schlepütz, Christian M.</creatorcontrib><creatorcontrib>Cnudde, Veerle</creatorcontrib><creatorcontrib>Doster, Florian</creatorcontrib><creatorcontrib>Busch, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Tomos</au><au>Bultreys, Tom</au><au>Van Stappen, Jeroen</au><au>Singh, Kamaljit</au><au>Achuo Dze, Sahyuo</au><au>Van Offenwert, Stefanie</au><au>Callow, Ben</au><au>Borji, Mostafa</au><au>Boersheim, Erik Clemens</au><au>Novak, Vladimir</au><au>Schlepütz, Christian M.</au><au>Cnudde, Veerle</au><au>Doster, Florian</au><au>Busch, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>151</volume><issue>12</issue><spage>2387</spage><epage>2403</epage><pages>2387-2403</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, λ b  ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low λ b fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where λ b  ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage. Article Highlights Gas leakage from subsurface storage reservoirs requires a profound understanding of multi-phase flow in fractures. The effect of fracture roughness on multi-phase flow has a significant impact but remains insufficiently understood. Synchrotron-based imaging provides the spatial and temporal resolution to broaden our understanding of multi-phase fracture flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-024-02117-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3279-5202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2024-09, Vol.151 (12), p.2387-2403
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_3110809407
source SpringerLink Journals - AutoHoldings
subjects Apertures
Capillary pressure
Civil Engineering
Classical and Continuum Physics
Constitutive relationships
Drainage
Earth and Environmental Science
Earth Sciences
Fractal analysis
Fractal geometry
Fractures
Geotechnical Engineering & Applied Earth Sciences
Heterogeneity
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Leakage
Modelling
Multiphase flow
Percolation
Porous media
Roughness
Synchrotron radiation
Temporal resolution
Wetting
X ray imagery
title Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Local%20Aperture%20Heterogeneity%20on%20Invading%20Fluid%20Connectivity%20During%20Rough%20Fracture%20Drainage&rft.jtitle=Transport%20in%20porous%20media&rft.au=Phillips,%20Tomos&rft.date=2024-09-01&rft.volume=151&rft.issue=12&rft.spage=2387&rft.epage=2403&rft.pages=2387-2403&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-024-02117-5&rft_dat=%3Cproquest_cross%3E3110809407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110809407&rft_id=info:pmid/&rfr_iscdi=true