The shunt conductive effect of Ag doped RRAM via a qualitative circuit model
Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity....
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2024-10, Vol.130 (10), Article 761 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 130 |
creator | He, Hongyang Gao, Yunlong Li, Tiejun Lin, Yuxiang Huang, Qiao He, Ruotong Li, Jing Liu, Yan Pan, Jinyan |
description | Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM. |
doi_str_mv | 10.1007/s00339-024-07906-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110716082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110716082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaS7LUrxBRSh1HTKZTDulnbTJTMG3d9oR3Hk2hwPf_x_4ELqn8EgB1FMG4NwQYIKAMiCJuUAjKjgjIDlcohEYoYjmRl6jm5w30I9gbITmy3XAed01LfaxKTvf1seAQ1UF3-JY4ekKl3EfSrxYTD_wsXbY4UPntnXrzqSvk-_qFu9iGba36Kpy2xzufvcYfb08L2dvZP75-j6bzolnAC0JVAihmCgUcM19IYIsDAhVcKn7YyKU1tRro6STTBXO8GpizMRz7Qrj-nOMHobefYqHLuTWbmKXmv6l5ZSCohI06yk2UD7FnFOo7D7VO5e-LQV7smYHa7a3Zs_W7KmaD6Hcw80qpL_qf1I_GvRtjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110716082</pqid></control><display><type>article</type><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><source>SpringerNature Journals</source><creator>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</creator><creatorcontrib>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</creatorcontrib><description>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07906-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density ; Doping ; Machines ; Manufacturing ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Qualitative analysis ; Random access memory ; Silver ; Stability ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07906-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07906-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>He, Hongyang</creatorcontrib><creatorcontrib>Gao, Yunlong</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Lin, Yuxiang</creatorcontrib><creatorcontrib>Huang, Qiao</creatorcontrib><creatorcontrib>He, Ruotong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Pan, Jinyan</creatorcontrib><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Doping</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Qualitative analysis</subject><subject>Random access memory</subject><subject>Silver</subject><subject>Stability</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaS7LUrxBRSh1HTKZTDulnbTJTMG3d9oR3Hk2hwPf_x_4ELqn8EgB1FMG4NwQYIKAMiCJuUAjKjgjIDlcohEYoYjmRl6jm5w30I9gbITmy3XAed01LfaxKTvf1seAQ1UF3-JY4ekKl3EfSrxYTD_wsXbY4UPntnXrzqSvk-_qFu9iGba36Kpy2xzufvcYfb08L2dvZP75-j6bzolnAC0JVAihmCgUcM19IYIsDAhVcKn7YyKU1tRro6STTBXO8GpizMRz7Qrj-nOMHobefYqHLuTWbmKXmv6l5ZSCohI06yk2UD7FnFOo7D7VO5e-LQV7smYHa7a3Zs_W7KmaD6Hcw80qpL_qf1I_GvRtjQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>He, Hongyang</creator><creator>Gao, Yunlong</creator><creator>Li, Tiejun</creator><creator>Lin, Yuxiang</creator><creator>Huang, Qiao</creator><creator>He, Ruotong</creator><creator>Li, Jing</creator><creator>Liu, Yan</creator><creator>Pan, Jinyan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><author>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Doping</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Qualitative analysis</topic><topic>Random access memory</topic><topic>Silver</topic><topic>Stability</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hongyang</creatorcontrib><creatorcontrib>Gao, Yunlong</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Lin, Yuxiang</creatorcontrib><creatorcontrib>Huang, Qiao</creatorcontrib><creatorcontrib>He, Ruotong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Pan, Jinyan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Hongyang</au><au>Gao, Yunlong</au><au>Li, Tiejun</au><au>Lin, Yuxiang</au><au>Huang, Qiao</au><au>He, Ruotong</au><au>Li, Jing</au><au>Liu, Yan</au><au>Pan, Jinyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>130</volume><issue>10</issue><artnum>761</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07906-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 761 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_3110716082 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Density Doping Machines Manufacturing Nanoparticles Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Qualitative analysis Random access memory Silver Stability Surfaces and Interfaces Thin Films |
title | The shunt conductive effect of Ag doped RRAM via a qualitative circuit model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shunt%20conductive%20effect%20of%20Ag%20doped%20RRAM%20via%20a%20qualitative%20circuit%20model&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=He,%20Hongyang&rft.date=2024-10-01&rft.volume=130&rft.issue=10&rft.artnum=761&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07906-9&rft_dat=%3Cproquest_cross%3E3110716082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110716082&rft_id=info:pmid/&rfr_iscdi=true |