The shunt conductive effect of Ag doped RRAM via a qualitative circuit model

Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2024-10, Vol.130 (10), Article 761
Hauptverfasser: He, Hongyang, Gao, Yunlong, Li, Tiejun, Lin, Yuxiang, Huang, Qiao, He, Ruotong, Li, Jing, Liu, Yan, Pan, Jinyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator He, Hongyang
Gao, Yunlong
Li, Tiejun
Lin, Yuxiang
Huang, Qiao
He, Ruotong
Li, Jing
Liu, Yan
Pan, Jinyan
description Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.
doi_str_mv 10.1007/s00339-024-07906-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110716082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110716082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaS7LUrxBRSh1HTKZTDulnbTJTMG3d9oR3Hk2hwPf_x_4ELqn8EgB1FMG4NwQYIKAMiCJuUAjKjgjIDlcohEYoYjmRl6jm5w30I9gbITmy3XAed01LfaxKTvf1seAQ1UF3-JY4ekKl3EfSrxYTD_wsXbY4UPntnXrzqSvk-_qFu9iGba36Kpy2xzufvcYfb08L2dvZP75-j6bzolnAC0JVAihmCgUcM19IYIsDAhVcKn7YyKU1tRro6STTBXO8GpizMRz7Qrj-nOMHobefYqHLuTWbmKXmv6l5ZSCohI06yk2UD7FnFOo7D7VO5e-LQV7smYHa7a3Zs_W7KmaD6Hcw80qpL_qf1I_GvRtjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110716082</pqid></control><display><type>article</type><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><source>SpringerNature Journals</source><creator>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</creator><creatorcontrib>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</creatorcontrib><description>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07906-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Density ; Doping ; Machines ; Manufacturing ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Qualitative analysis ; Random access memory ; Silver ; Stability ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-10, Vol.130 (10), Article 761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-024-07906-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-024-07906-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>He, Hongyang</creatorcontrib><creatorcontrib>Gao, Yunlong</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Lin, Yuxiang</creatorcontrib><creatorcontrib>Huang, Qiao</creatorcontrib><creatorcontrib>He, Ruotong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Pan, Jinyan</creatorcontrib><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Doping</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Qualitative analysis</subject><subject>Random access memory</subject><subject>Silver</subject><subject>Stability</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpyaS7LUrxBRSh1HTKZTDulnbTJTMG3d9oR3Hk2hwPf_x_4ELqn8EgB1FMG4NwQYIKAMiCJuUAjKjgjIDlcohEYoYjmRl6jm5w30I9gbITmy3XAed01LfaxKTvf1seAQ1UF3-JY4ekKl3EfSrxYTD_wsXbY4UPntnXrzqSvk-_qFu9iGba36Kpy2xzufvcYfb08L2dvZP75-j6bzolnAC0JVAihmCgUcM19IYIsDAhVcKn7YyKU1tRro6STTBXO8GpizMRz7Qrj-nOMHobefYqHLuTWbmKXmv6l5ZSCohI06yk2UD7FnFOo7D7VO5e-LQV7smYHa7a3Zs_W7KmaD6Hcw80qpL_qf1I_GvRtjQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>He, Hongyang</creator><creator>Gao, Yunlong</creator><creator>Li, Tiejun</creator><creator>Lin, Yuxiang</creator><creator>Huang, Qiao</creator><creator>He, Ruotong</creator><creator>Li, Jing</creator><creator>Liu, Yan</creator><creator>Pan, Jinyan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</title><author>He, Hongyang ; Gao, Yunlong ; Li, Tiejun ; Lin, Yuxiang ; Huang, Qiao ; He, Ruotong ; Li, Jing ; Liu, Yan ; Pan, Jinyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e1444724b70383cb4e6b9047b368b4e547881c8976a627ba93f5995c38ab9aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Doping</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Qualitative analysis</topic><topic>Random access memory</topic><topic>Silver</topic><topic>Stability</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hongyang</creatorcontrib><creatorcontrib>Gao, Yunlong</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Lin, Yuxiang</creatorcontrib><creatorcontrib>Huang, Qiao</creatorcontrib><creatorcontrib>He, Ruotong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Pan, Jinyan</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Hongyang</au><au>Gao, Yunlong</au><au>Li, Tiejun</au><au>Lin, Yuxiang</au><au>Huang, Qiao</au><au>He, Ruotong</au><au>Li, Jing</au><au>Liu, Yan</au><au>Pan, Jinyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shunt conductive effect of Ag doped RRAM via a qualitative circuit model</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>130</volume><issue>10</issue><artnum>761</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Resistive random access memory has attracted a great deal of attention due to its simple structure and high storage density. With the development of doping technology for RRAMs, it faces some problems in the resistive switching parament, such as high switching voltage, poor stability and uniformity. In this work, two different nanoparticle doping modes of RRAM were prepared, thin layer doping with appropriate density achieved better RS stability and uniformity for low power consumption devices. A circuit model is presented to analyze the conductive path in the resistive layer to fully account for why the thin layer doping with better performance. The uniform nanoparticle thin layer doping helps to connect more bypass channels as nodes, which increases the conductivity. Additionally, we investigated the effect of Ag nanoparticle density on the resistive characteristics, which experimentally verified the proposed circuit model. The combination of the proposed circuit model with the doping technology will significantly facilitate the development of RRAM.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07906-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-10, Vol.130 (10), Article 761
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3110716082
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Density
Doping
Machines
Manufacturing
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Qualitative analysis
Random access memory
Silver
Stability
Surfaces and Interfaces
Thin Films
title The shunt conductive effect of Ag doped RRAM via a qualitative circuit model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shunt%20conductive%20effect%20of%20Ag%20doped%20RRAM%20via%20a%20qualitative%20circuit%20model&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=He,%20Hongyang&rft.date=2024-10-01&rft.volume=130&rft.issue=10&rft.artnum=761&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07906-9&rft_dat=%3Cproquest_cross%3E3110716082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110716082&rft_id=info:pmid/&rfr_iscdi=true