An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model

Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-09, Vol.16 (18), p.2661
Hauptverfasser: Kim, Nari, Lee, Soo-Jin, Sohn, Eunha, Kim, Mija, Seong, Seonkyeong, Kim, Seung Hee, Lee, Yangwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 2661
container_title Water (Basel)
container_volume 16
creator Kim, Nari
Lee, Soo-Jin
Sohn, Eunha
Kim, Mija
Seong, Seonkyeong
Kim, Seung Hee
Lee, Yangwon
description Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data retrieval facilitated by reanalysis models such as the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) and the Global Land Data Assimilation System (GLDAS). However, the suitability of these methods for capturing local-scale variabilities is insufficiently validated, particularly in regions like South Korea, where land surfaces are highly complex and heterogeneous. In contrast, artificial intelligence (AI) approaches have shown promising potential for soil moisture retrieval at the local scale but have rarely demonstrated substantial products for spatially continuous grids. This paper presents the retrieval of daily soil moisture (SM) over a 500 m grid for croplands in South Korea using random forest (RF) and automated machine learning (AutoML) models, leveraging satellite images and meteorological data. In a blind test conducted for the years 2013–2019, the AutoML-based SM model demonstrated optimal performance, achieving a root mean square error of 2.713% and a correlation coefficient of 0.940. Furthermore, the performance of the AutoML model remained consistent across all the years and months, as well as under extreme weather conditions, indicating its reliability and stability. Comparing the soil moisture data derived from our AutoML model with the reanalysis data from sources such as the European Space Agency Climate Change Initiative (ESA CCI), GLDAS, the Local Data Assimilation and Prediction System (LDAPS), and ERA5 for the South Korea region reveals that our AutoML model provides a much better representation. These experiments confirm the feasibility of AutoML-based SM retrieval, particularly for local agrometeorological applications in regions with heterogeneous land surfaces like South Korea.
doi_str_mv 10.3390/w16182661
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110711287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811856428</galeid><sourcerecordid>A811856428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-d9fa26984d1e3bc5484e8fa191a121add5b4ed441afcec190a5e41806df4dfb23</originalsourceid><addsrcrecordid>eNpNkcFqHDEMhofSQEOaQ9_A0FMhm448nlnPccimSegugaY5D1pbnnXw2lvb05AXynPWYUupdJD4kT4hqao-QX3ZNH399Rk6kLzr4F11yutlsxBCwPv_8g_VeUpPdTHRS9nWp9Xr4Nkw57DHTJptUO2sJ7YmjN76iQ2HQwxFZDmwvCP2g3K09BsdC4at0LoX9hCsY5tgU54jMeuLMOcd-x4iIXtMb5SHAnfOZmJ3e5woXbANZQoxuDBZVWArzHjB0Gu2spPNRbl2ZUq2wRe0JvexOjHoEp3_jWfV47frn1e3i_X9zd3VsF4oziEvdG-Qd70UGqjZqlZIQdIg9IDAAbVut4J0OQQaRQr6GlsSIOtOG6HNljdn1ecjt6z9a6aUx6cwR19Gjg1AvQTgclmqLo9VEzoarTchR1TFNe2tCp6MLfogAWTbCS5Lw5djg4ohpUhmPES7x_gyQj2-vW7897rmD3PujGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110711287</pqid></control><display><type>article</type><title>An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Kim, Nari ; Lee, Soo-Jin ; Sohn, Eunha ; Kim, Mija ; Seong, Seonkyeong ; Kim, Seung Hee ; Lee, Yangwon</creator><creatorcontrib>Kim, Nari ; Lee, Soo-Jin ; Sohn, Eunha ; Kim, Mija ; Seong, Seonkyeong ; Kim, Seung Hee ; Lee, Yangwon</creatorcontrib><description>Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data retrieval facilitated by reanalysis models such as the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) and the Global Land Data Assimilation System (GLDAS). However, the suitability of these methods for capturing local-scale variabilities is insufficiently validated, particularly in regions like South Korea, where land surfaces are highly complex and heterogeneous. In contrast, artificial intelligence (AI) approaches have shown promising potential for soil moisture retrieval at the local scale but have rarely demonstrated substantial products for spatially continuous grids. This paper presents the retrieval of daily soil moisture (SM) over a 500 m grid for croplands in South Korea using random forest (RF) and automated machine learning (AutoML) models, leveraging satellite images and meteorological data. In a blind test conducted for the years 2013–2019, the AutoML-based SM model demonstrated optimal performance, achieving a root mean square error of 2.713% and a correlation coefficient of 0.940. Furthermore, the performance of the AutoML model remained consistent across all the years and months, as well as under extreme weather conditions, indicating its reliability and stability. Comparing the soil moisture data derived from our AutoML model with the reanalysis data from sources such as the European Space Agency Climate Change Initiative (ESA CCI), GLDAS, the Local Data Assimilation and Prediction System (LDAPS), and ERA5 for the South Korea region reveals that our AutoML model provides a much better representation. These experiments confirm the feasibility of AutoML-based SM retrieval, particularly for local agrometeorological applications in regions with heterogeneous land surfaces like South Korea.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16182661</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Artificial satellites in remote sensing ; Automation ; Climatic changes ; Data assimilation ; Extreme weather ; Hydrologic cycle ; Hydrology ; Machine learning ; Plant growth ; Precipitation ; Radiation ; Rain and rainfall ; Satellites ; Sensors ; Soil moisture ; Soils ; Topography ; Variables ; Vegetation</subject><ispartof>Water (Basel), 2024-09, Vol.16 (18), p.2661</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-d9fa26984d1e3bc5484e8fa191a121add5b4ed441afcec190a5e41806df4dfb23</cites><orcidid>0000-0002-5251-6100 ; 0000-0003-2805-1750 ; 0000-0001-6852-6146 ; 0000-0002-5949-8996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Kim, Nari</creatorcontrib><creatorcontrib>Lee, Soo-Jin</creatorcontrib><creatorcontrib>Sohn, Eunha</creatorcontrib><creatorcontrib>Kim, Mija</creatorcontrib><creatorcontrib>Seong, Seonkyeong</creatorcontrib><creatorcontrib>Kim, Seung Hee</creatorcontrib><creatorcontrib>Lee, Yangwon</creatorcontrib><title>An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model</title><title>Water (Basel)</title><description>Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data retrieval facilitated by reanalysis models such as the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) and the Global Land Data Assimilation System (GLDAS). However, the suitability of these methods for capturing local-scale variabilities is insufficiently validated, particularly in regions like South Korea, where land surfaces are highly complex and heterogeneous. In contrast, artificial intelligence (AI) approaches have shown promising potential for soil moisture retrieval at the local scale but have rarely demonstrated substantial products for spatially continuous grids. This paper presents the retrieval of daily soil moisture (SM) over a 500 m grid for croplands in South Korea using random forest (RF) and automated machine learning (AutoML) models, leveraging satellite images and meteorological data. In a blind test conducted for the years 2013–2019, the AutoML-based SM model demonstrated optimal performance, achieving a root mean square error of 2.713% and a correlation coefficient of 0.940. Furthermore, the performance of the AutoML model remained consistent across all the years and months, as well as under extreme weather conditions, indicating its reliability and stability. Comparing the soil moisture data derived from our AutoML model with the reanalysis data from sources such as the European Space Agency Climate Change Initiative (ESA CCI), GLDAS, the Local Data Assimilation and Prediction System (LDAPS), and ERA5 for the South Korea region reveals that our AutoML model provides a much better representation. These experiments confirm the feasibility of AutoML-based SM retrieval, particularly for local agrometeorological applications in regions with heterogeneous land surfaces like South Korea.</description><subject>Artificial intelligence</subject><subject>Artificial satellites in remote sensing</subject><subject>Automation</subject><subject>Climatic changes</subject><subject>Data assimilation</subject><subject>Extreme weather</subject><subject>Hydrologic cycle</subject><subject>Hydrology</subject><subject>Machine learning</subject><subject>Plant growth</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Rain and rainfall</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Topography</subject><subject>Variables</subject><subject>Vegetation</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkcFqHDEMhofSQEOaQ9_A0FMhm448nlnPccimSegugaY5D1pbnnXw2lvb05AXynPWYUupdJD4kT4hqao-QX3ZNH399Rk6kLzr4F11yutlsxBCwPv_8g_VeUpPdTHRS9nWp9Xr4Nkw57DHTJptUO2sJ7YmjN76iQ2HQwxFZDmwvCP2g3K09BsdC4at0LoX9hCsY5tgU54jMeuLMOcd-x4iIXtMb5SHAnfOZmJ3e5woXbANZQoxuDBZVWArzHjB0Gu2spPNRbl2ZUq2wRe0JvexOjHoEp3_jWfV47frn1e3i_X9zd3VsF4oziEvdG-Qd70UGqjZqlZIQdIg9IDAAbVut4J0OQQaRQr6GlsSIOtOG6HNljdn1ecjt6z9a6aUx6cwR19Gjg1AvQTgclmqLo9VEzoarTchR1TFNe2tCp6MLfogAWTbCS5Lw5djg4ohpUhmPES7x_gyQj2-vW7897rmD3PujGA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kim, Nari</creator><creator>Lee, Soo-Jin</creator><creator>Sohn, Eunha</creator><creator>Kim, Mija</creator><creator>Seong, Seonkyeong</creator><creator>Kim, Seung Hee</creator><creator>Lee, Yangwon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5251-6100</orcidid><orcidid>https://orcid.org/0000-0003-2805-1750</orcidid><orcidid>https://orcid.org/0000-0001-6852-6146</orcidid><orcidid>https://orcid.org/0000-0002-5949-8996</orcidid></search><sort><creationdate>20240901</creationdate><title>An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model</title><author>Kim, Nari ; Lee, Soo-Jin ; Sohn, Eunha ; Kim, Mija ; Seong, Seonkyeong ; Kim, Seung Hee ; Lee, Yangwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-d9fa26984d1e3bc5484e8fa191a121add5b4ed441afcec190a5e41806df4dfb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial satellites in remote sensing</topic><topic>Automation</topic><topic>Climatic changes</topic><topic>Data assimilation</topic><topic>Extreme weather</topic><topic>Hydrologic cycle</topic><topic>Hydrology</topic><topic>Machine learning</topic><topic>Plant growth</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Rain and rainfall</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Topography</topic><topic>Variables</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Nari</creatorcontrib><creatorcontrib>Lee, Soo-Jin</creatorcontrib><creatorcontrib>Sohn, Eunha</creatorcontrib><creatorcontrib>Kim, Mija</creatorcontrib><creatorcontrib>Seong, Seonkyeong</creatorcontrib><creatorcontrib>Kim, Seung Hee</creatorcontrib><creatorcontrib>Lee, Yangwon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Nari</au><au>Lee, Soo-Jin</au><au>Sohn, Eunha</au><au>Kim, Mija</au><au>Seong, Seonkyeong</au><au>Kim, Seung Hee</au><au>Lee, Yangwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model</atitle><jtitle>Water (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>16</volume><issue>18</issue><spage>2661</spage><pages>2661-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Soil moisture is a critical parameter that significantly impacts the global energy balance, including the hydrologic cycle, land–atmosphere interactions, soil evaporation, and plant growth. Currently, soil moisture is typically measured by installing sensors in the ground or through satellite remote sensing, with data retrieval facilitated by reanalysis models such as the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) and the Global Land Data Assimilation System (GLDAS). However, the suitability of these methods for capturing local-scale variabilities is insufficiently validated, particularly in regions like South Korea, where land surfaces are highly complex and heterogeneous. In contrast, artificial intelligence (AI) approaches have shown promising potential for soil moisture retrieval at the local scale but have rarely demonstrated substantial products for spatially continuous grids. This paper presents the retrieval of daily soil moisture (SM) over a 500 m grid for croplands in South Korea using random forest (RF) and automated machine learning (AutoML) models, leveraging satellite images and meteorological data. In a blind test conducted for the years 2013–2019, the AutoML-based SM model demonstrated optimal performance, achieving a root mean square error of 2.713% and a correlation coefficient of 0.940. Furthermore, the performance of the AutoML model remained consistent across all the years and months, as well as under extreme weather conditions, indicating its reliability and stability. Comparing the soil moisture data derived from our AutoML model with the reanalysis data from sources such as the European Space Agency Climate Change Initiative (ESA CCI), GLDAS, the Local Data Assimilation and Prediction System (LDAPS), and ERA5 for the South Korea region reveals that our AutoML model provides a much better representation. These experiments confirm the feasibility of AutoML-based SM retrieval, particularly for local agrometeorological applications in regions with heterogeneous land surfaces like South Korea.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16182661</doi><orcidid>https://orcid.org/0000-0002-5251-6100</orcidid><orcidid>https://orcid.org/0000-0003-2805-1750</orcidid><orcidid>https://orcid.org/0000-0001-6852-6146</orcidid><orcidid>https://orcid.org/0000-0002-5949-8996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-09, Vol.16 (18), p.2661
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3110711287
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Artificial intelligence
Artificial satellites in remote sensing
Automation
Climatic changes
Data assimilation
Extreme weather
Hydrologic cycle
Hydrology
Machine learning
Plant growth
Precipitation
Radiation
Rain and rainfall
Satellites
Sensors
Soil moisture
Soils
Topography
Variables
Vegetation
title An Automated Machine Learning Approach to the Retrieval of Daily Soil Moisture in South Korea Using Satellite Images, Meteorological Data, and Digital Elevation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20Machine%20Learning%20Approach%20to%20the%20Retrieval%20of%20Daily%20Soil%20Moisture%20in%20South%20Korea%20Using%20Satellite%20Images,%20Meteorological%20Data,%20and%20Digital%20Elevation%20Model&rft.jtitle=Water%20(Basel)&rft.au=Kim,%20Nari&rft.date=2024-09-01&rft.volume=16&rft.issue=18&rft.spage=2661&rft.pages=2661-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16182661&rft_dat=%3Cgale_proqu%3EA811856428%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110711287&rft_id=info:pmid/&rft_galeid=A811856428&rfr_iscdi=true