The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market
Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production usin...
Gespeichert in:
Veröffentlicht in: | Processes 2024-09, Vol.12 (9), p.1923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1923 |
container_title | Processes |
container_volume | 12 |
creator | Alvarado-Vallejo, Andrea Marín-Peña, Oscar Rosas-Mendoza, Erik Samuel Méndez-Contreras, Juan Manuel Alvarado-Lassman, Alejandro |
description | Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production. |
doi_str_mv | 10.3390/pr12091923 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110670283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810838375</galeid><sourcerecordid>A810838375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d55676af90714ee14e9f1f9f70fbf1b6c4a6e06c891eb07b1a64bc0015201ba03</originalsourceid><addsrcrecordid>eNpNUW1LAzEMPkRBUb_4Cwp-E6Z92V2vfpvTqTARZJsfj1wvndW762w7UP-Ef9mOCZoQEsjzPElIlp0wei6EohcrzzhVTHGxkx1wzuVASSZ3_9X72XEIrzSZYqLMi4Pse_aCZAGt8_YLonU9cYZM_NpGAn1DFrjECHWL5BlCxEDmwfbL1CKjHtC72moysR_YkCvrjG078oSgo_OXZETGEHAjd22DBt8k0Mx1EF2SMd51BMjMQ2M3U6ElD-DfMB5lewbagMe_-TCbT25m47vB9PH2fjyaDjTnIg6aPC9kAUZRyYaIKZRhRhlJTW1YXeghFEgLXSqGNZU1g2JYa0pZzimrgYrD7HSru_LufY0hVq9u7dMeoRKM0UJSXoqEOt-iltBiZXvjogedvMHOatdjOhmrUcloKUoh80Q42xK0dyF4NNXK2w78Z8VotXlS9fck8QNbxoPu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110670283</pqid></control><display><type>article</type><title>The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Alvarado-Vallejo, Andrea ; Marín-Peña, Oscar ; Rosas-Mendoza, Erik Samuel ; Méndez-Contreras, Juan Manuel ; Alvarado-Lassman, Alejandro</creator><creatorcontrib>Alvarado-Vallejo, Andrea ; Marín-Peña, Oscar ; Rosas-Mendoza, Erik Samuel ; Méndez-Contreras, Juan Manuel ; Alvarado-Lassman, Alejandro</creatorcontrib><description>Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12091923</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acidification ; Agricultural wastes ; Alkalinity ; Alternative energy sources ; Anaerobic digestion ; Anaerobic processes ; Anaerobic treatment ; Biofilms ; Biogas ; Biomass ; Biomass energy ; Bioreactors ; Calcium carbonate ; Chemical oxygen demand ; Fiberglass ; Fixed beds ; Fruits ; Greenhouse gases ; Hydraulic retention time ; Hydraulics ; Loading rate ; Maintenance and repair ; Methane ; Microorganisms ; Moisture content ; Nitrogen ; Organic loading ; Organic matter ; pH control ; pH effects ; Rankings ; Refuse and refuse disposal ; Stability ; Substrate inhibition ; Tomatoes ; Vegetable industry ; Vegetables ; Water content</subject><ispartof>Processes, 2024-09, Vol.12 (9), p.1923</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-d55676af90714ee14e9f1f9f70fbf1b6c4a6e06c891eb07b1a64bc0015201ba03</cites><orcidid>0000-0002-9745-4628 ; 0000-0002-3052-0950 ; 0009-0003-5957-4295 ; 0000-0001-9818-4300 ; 0000-0002-2353-9143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Alvarado-Vallejo, Andrea</creatorcontrib><creatorcontrib>Marín-Peña, Oscar</creatorcontrib><creatorcontrib>Rosas-Mendoza, Erik Samuel</creatorcontrib><creatorcontrib>Méndez-Contreras, Juan Manuel</creatorcontrib><creatorcontrib>Alvarado-Lassman, Alejandro</creatorcontrib><title>The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market</title><title>Processes</title><description>Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production.</description><subject>Acidification</subject><subject>Agricultural wastes</subject><subject>Alkalinity</subject><subject>Alternative energy sources</subject><subject>Anaerobic digestion</subject><subject>Anaerobic processes</subject><subject>Anaerobic treatment</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Bioreactors</subject><subject>Calcium carbonate</subject><subject>Chemical oxygen demand</subject><subject>Fiberglass</subject><subject>Fixed beds</subject><subject>Fruits</subject><subject>Greenhouse gases</subject><subject>Hydraulic retention time</subject><subject>Hydraulics</subject><subject>Loading rate</subject><subject>Maintenance and repair</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Moisture content</subject><subject>Nitrogen</subject><subject>Organic loading</subject><subject>Organic matter</subject><subject>pH control</subject><subject>pH effects</subject><subject>Rankings</subject><subject>Refuse and refuse disposal</subject><subject>Stability</subject><subject>Substrate inhibition</subject><subject>Tomatoes</subject><subject>Vegetable industry</subject><subject>Vegetables</subject><subject>Water content</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUW1LAzEMPkRBUb_4Cwp-E6Z92V2vfpvTqTARZJsfj1wvndW762w7UP-Ef9mOCZoQEsjzPElIlp0wei6EohcrzzhVTHGxkx1wzuVASSZ3_9X72XEIrzSZYqLMi4Pse_aCZAGt8_YLonU9cYZM_NpGAn1DFrjECHWL5BlCxEDmwfbL1CKjHtC72moysR_YkCvrjG078oSgo_OXZETGEHAjd22DBt8k0Mx1EF2SMd51BMjMQ2M3U6ElD-DfMB5lewbagMe_-TCbT25m47vB9PH2fjyaDjTnIg6aPC9kAUZRyYaIKZRhRhlJTW1YXeghFEgLXSqGNZU1g2JYa0pZzimrgYrD7HSru_LufY0hVq9u7dMeoRKM0UJSXoqEOt-iltBiZXvjogedvMHOatdjOhmrUcloKUoh80Q42xK0dyF4NNXK2w78Z8VotXlS9fck8QNbxoPu</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Alvarado-Vallejo, Andrea</creator><creator>Marín-Peña, Oscar</creator><creator>Rosas-Mendoza, Erik Samuel</creator><creator>Méndez-Contreras, Juan Manuel</creator><creator>Alvarado-Lassman, Alejandro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9745-4628</orcidid><orcidid>https://orcid.org/0000-0002-3052-0950</orcidid><orcidid>https://orcid.org/0009-0003-5957-4295</orcidid><orcidid>https://orcid.org/0000-0001-9818-4300</orcidid><orcidid>https://orcid.org/0000-0002-2353-9143</orcidid></search><sort><creationdate>20240901</creationdate><title>The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market</title><author>Alvarado-Vallejo, Andrea ; Marín-Peña, Oscar ; Rosas-Mendoza, Erik Samuel ; Méndez-Contreras, Juan Manuel ; Alvarado-Lassman, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d55676af90714ee14e9f1f9f70fbf1b6c4a6e06c891eb07b1a64bc0015201ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidification</topic><topic>Agricultural wastes</topic><topic>Alkalinity</topic><topic>Alternative energy sources</topic><topic>Anaerobic digestion</topic><topic>Anaerobic processes</topic><topic>Anaerobic treatment</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Bioreactors</topic><topic>Calcium carbonate</topic><topic>Chemical oxygen demand</topic><topic>Fiberglass</topic><topic>Fixed beds</topic><topic>Fruits</topic><topic>Greenhouse gases</topic><topic>Hydraulic retention time</topic><topic>Hydraulics</topic><topic>Loading rate</topic><topic>Maintenance and repair</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Moisture content</topic><topic>Nitrogen</topic><topic>Organic loading</topic><topic>Organic matter</topic><topic>pH control</topic><topic>pH effects</topic><topic>Rankings</topic><topic>Refuse and refuse disposal</topic><topic>Stability</topic><topic>Substrate inhibition</topic><topic>Tomatoes</topic><topic>Vegetable industry</topic><topic>Vegetables</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarado-Vallejo, Andrea</creatorcontrib><creatorcontrib>Marín-Peña, Oscar</creatorcontrib><creatorcontrib>Rosas-Mendoza, Erik Samuel</creatorcontrib><creatorcontrib>Méndez-Contreras, Juan Manuel</creatorcontrib><creatorcontrib>Alvarado-Lassman, Alejandro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarado-Vallejo, Andrea</au><au>Marín-Peña, Oscar</au><au>Rosas-Mendoza, Erik Samuel</au><au>Méndez-Contreras, Juan Manuel</au><au>Alvarado-Lassman, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market</atitle><jtitle>Processes</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>1923</spage><pages>1923-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Tomato waste, characterized by high organic matter and moisture content, offers a promising substrate for anaerobic digestion, though rapid acidification can inhibit methanogenic activity. This study investigated the performance of a 10.25 L anaerobic fixed biofilm reactor for biogas production using liquid tomato waste, processed through grinding and filtration, at high organic loading rates, without external pH control or co-digestion. Four scouring pads were vertically installed as a fixed bed within a fiberglass structure. Reactor performance and buffering capacity were assessed over three stages with progressively increasing organic loading rates (3.2, 4.35, and 6.26 gCOD/L·d). Methane yields of 0.419 LCH4/gCOD and 0.563 LCH4/g VS were achieved during the kinetic study following stabilization. Biogas production rates reached 1586 mL/h, 1804 mL/h, and 4117 mL/h across the three stages, with methane contents of 69%, 65%, and 72.3%, respectively. Partial alkalinity fluctuated, starting above 1500 mg CaCO3/L in Stage 1, dropping below 500 mg CaCO3/L in Stage 2, and surpassing 3000 mg CaCO3/L in Stage 3. Despite periods of forced acidification, the system demonstrated significant resilience and high buffering capacity, maintaining stability through hydraulic retention time adjustments without the need for external pH regulation. The key stability indicators identified include partial alkalinity, effluent chemical oxygen demand, pH, and one-day cumulative biogas. This study highlights the effectiveness of anaerobic fixed biofilm reactors in treating tomato waste and similar fruit and vegetable residues for sustainable biogas production.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12091923</doi><orcidid>https://orcid.org/0000-0002-9745-4628</orcidid><orcidid>https://orcid.org/0000-0002-3052-0950</orcidid><orcidid>https://orcid.org/0009-0003-5957-4295</orcidid><orcidid>https://orcid.org/0000-0001-9818-4300</orcidid><orcidid>https://orcid.org/0000-0002-2353-9143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-09, Vol.12 (9), p.1923 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3110670283 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Acidification Agricultural wastes Alkalinity Alternative energy sources Anaerobic digestion Anaerobic processes Anaerobic treatment Biofilms Biogas Biomass Biomass energy Bioreactors Calcium carbonate Chemical oxygen demand Fiberglass Fixed beds Fruits Greenhouse gases Hydraulic retention time Hydraulics Loading rate Maintenance and repair Methane Microorganisms Moisture content Nitrogen Organic loading Organic matter pH control pH effects Rankings Refuse and refuse disposal Stability Substrate inhibition Tomatoes Vegetable industry Vegetables Water content |
title | The Valorization of Fruit and Vegetable Wastes Using an Anaerobic Fixed Biofilm Reactor: A Case of Discarded Tomatoes from a Traditional Market |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Valorization%20of%20Fruit%20and%20Vegetable%20Wastes%20Using%20an%20Anaerobic%20Fixed%20Biofilm%20Reactor:%20A%20Case%20of%20Discarded%20Tomatoes%20from%20a%20Traditional%20Market&rft.jtitle=Processes&rft.au=Alvarado-Vallejo,%20Andrea&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=1923&rft.pages=1923-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12091923&rft_dat=%3Cgale_proqu%3EA810838375%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110670283&rft_id=info:pmid/&rft_galeid=A810838375&rfr_iscdi=true |