Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance

At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-09, Vol.12 (9), p.1896
Hauptverfasser: Yang, Haoran, Wei, Mian, Wang, Baodong, Wang, Leqi, Chen, Qiuyan, Su, Chang, Feng, Yongcheng, Wang, Xing, Li, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1896
container_title Processes
container_volume 12
creator Yang, Haoran
Wei, Mian
Wang, Baodong
Wang, Leqi
Chen, Qiuyan
Su, Chang
Feng, Yongcheng
Wang, Xing
Li, Ke
description At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.
doi_str_mv 10.3390/pr12091896
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110670152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110670152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsGgv_oIFb0J0P5rs7tHGr0KlYvUcJptJm9Jk6-4G7L83pYLOZYbhmWfgJeSKs1spDbvbeS6Y4dpkJ2QkhFCJUVyd_pvPyTiEDRvKcKnTbERW7xgQvF1T19G4Rjrr6m2PnUXqagr0FVYdhqZvkykErGgOvhzIh8Z9NxXSKcSIfk-X-xCxPTjyhaDL6DyskL6hr51vYbBdkrMatgHHv_2CfD49fuQvyXzxPMvv54nlEx0TrUUFCmvBshoryZgCyyCdWGOryqjSKsbLLC2HjZoYUTGutbaQ8VIDYinlBbk-enfeffUYYrFxve-Gl4XknGXDfSoG6uZIWe9C8FgXO9-04PcFZ8Uhy-IvS_kDKwpmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110670152</pqid></control><display><type>article</type><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</creator><creatorcontrib>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</creatorcontrib><description>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12091896</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; Carbon sequestration ; Catalysis ; Catalytic converters ; Cerium oxides ; Chemical reactions ; Design ; Electrodes ; Electrolytes ; Electrons ; Emissions ; Energy consumption ; Energy costs ; Flow velocity ; Fossil fuels ; Hydrogen ; Hydrogen production ; Magnesium ; Marine transportation ; Metal oxides ; Oxidation ; Palladium ; Precious metals ; Process parameters ; Sea vessels ; Sodium hydroxide ; Transportation industry</subject><ispartof>Processes, 2024-09, Vol.12 (9), p.1896</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</cites><orcidid>0000-0002-2113-8020 ; 0000-0002-3550-9187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Wei, Mian</creatorcontrib><creatorcontrib>Wang, Baodong</creatorcontrib><creatorcontrib>Wang, Leqi</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Feng, Yongcheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><title>Processes</title><description>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</description><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalysis</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Chemical reactions</subject><subject>Design</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Flow velocity</subject><subject>Fossil fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Magnesium</subject><subject>Marine transportation</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Precious metals</subject><subject>Process parameters</subject><subject>Sea vessels</subject><subject>Sodium hydroxide</subject><subject>Transportation industry</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1Lw0AQhhdRsGgv_oIFb0J0P5rs7tHGr0KlYvUcJptJm9Jk6-4G7L83pYLOZYbhmWfgJeSKs1spDbvbeS6Y4dpkJ2QkhFCJUVyd_pvPyTiEDRvKcKnTbERW7xgQvF1T19G4Rjrr6m2PnUXqagr0FVYdhqZvkykErGgOvhzIh8Z9NxXSKcSIfk-X-xCxPTjyhaDL6DyskL6hr51vYbBdkrMatgHHv_2CfD49fuQvyXzxPMvv54nlEx0TrUUFCmvBshoryZgCyyCdWGOryqjSKsbLLC2HjZoYUTGutbaQ8VIDYinlBbk-enfeffUYYrFxve-Gl4XknGXDfSoG6uZIWe9C8FgXO9-04PcFZ8Uhy-IvS_kDKwpmHg</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Yang, Haoran</creator><creator>Wei, Mian</creator><creator>Wang, Baodong</creator><creator>Wang, Leqi</creator><creator>Chen, Qiuyan</creator><creator>Su, Chang</creator><creator>Feng, Yongcheng</creator><creator>Wang, Xing</creator><creator>Li, Ke</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2113-8020</orcidid><orcidid>https://orcid.org/0000-0002-3550-9187</orcidid></search><sort><creationdate>20240904</creationdate><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><author>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalysis</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Chemical reactions</topic><topic>Design</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Flow velocity</topic><topic>Fossil fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Magnesium</topic><topic>Marine transportation</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Precious metals</topic><topic>Process parameters</topic><topic>Sea vessels</topic><topic>Sodium hydroxide</topic><topic>Transportation industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Wei, Mian</creatorcontrib><creatorcontrib>Wang, Baodong</creatorcontrib><creatorcontrib>Wang, Leqi</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Feng, Yongcheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoran</au><au>Wei, Mian</au><au>Wang, Baodong</au><au>Wang, Leqi</au><au>Chen, Qiuyan</au><au>Su, Chang</au><au>Feng, Yongcheng</au><au>Wang, Xing</au><au>Li, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</atitle><jtitle>Processes</jtitle><date>2024-09-04</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>1896</spage><pages>1896-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12091896</doi><orcidid>https://orcid.org/0000-0002-2113-8020</orcidid><orcidid>https://orcid.org/0000-0002-3550-9187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-09, Vol.12 (9), p.1896
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3110670152
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Carbon dioxide
Carbon sequestration
Catalysis
Catalytic converters
Cerium oxides
Chemical reactions
Design
Electrodes
Electrolytes
Electrons
Emissions
Energy consumption
Energy costs
Flow velocity
Fossil fuels
Hydrogen
Hydrogen production
Magnesium
Marine transportation
Metal oxides
Oxidation
Palladium
Precious metals
Process parameters
Sea vessels
Sodium hydroxide
Transportation industry
title Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Influence%20of%20a%20Magnesium-Based%20Carbon%20Dioxide%20Battery%20System%20on%20CO2%20Storage%20Performance&rft.jtitle=Processes&rft.au=Yang,%20Haoran&rft.date=2024-09-04&rft.volume=12&rft.issue=9&rft.spage=1896&rft.pages=1896-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12091896&rft_dat=%3Cproquest_cross%3E3110670152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110670152&rft_id=info:pmid/&rfr_iscdi=true