Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance
At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challen...
Gespeichert in:
Veröffentlicht in: | Processes 2024-09, Vol.12 (9), p.1896 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1896 |
container_title | Processes |
container_volume | 12 |
creator | Yang, Haoran Wei, Mian Wang, Baodong Wang, Leqi Chen, Qiuyan Su, Chang Feng, Yongcheng Wang, Xing Li, Ke |
description | At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%. |
doi_str_mv | 10.3390/pr12091896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110670152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110670152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsGgv_oIFb0J0P5rs7tHGr0KlYvUcJptJm9Jk6-4G7L83pYLOZYbhmWfgJeSKs1spDbvbeS6Y4dpkJ2QkhFCJUVyd_pvPyTiEDRvKcKnTbERW7xgQvF1T19G4Rjrr6m2PnUXqagr0FVYdhqZvkykErGgOvhzIh8Z9NxXSKcSIfk-X-xCxPTjyhaDL6DyskL6hr51vYbBdkrMatgHHv_2CfD49fuQvyXzxPMvv54nlEx0TrUUFCmvBshoryZgCyyCdWGOryqjSKsbLLC2HjZoYUTGutbaQ8VIDYinlBbk-enfeffUYYrFxve-Gl4XknGXDfSoG6uZIWe9C8FgXO9-04PcFZ8Uhy-IvS_kDKwpmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110670152</pqid></control><display><type>article</type><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</creator><creatorcontrib>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</creatorcontrib><description>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12091896</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon dioxide ; Carbon sequestration ; Catalysis ; Catalytic converters ; Cerium oxides ; Chemical reactions ; Design ; Electrodes ; Electrolytes ; Electrons ; Emissions ; Energy consumption ; Energy costs ; Flow velocity ; Fossil fuels ; Hydrogen ; Hydrogen production ; Magnesium ; Marine transportation ; Metal oxides ; Oxidation ; Palladium ; Precious metals ; Process parameters ; Sea vessels ; Sodium hydroxide ; Transportation industry</subject><ispartof>Processes, 2024-09, Vol.12 (9), p.1896</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</cites><orcidid>0000-0002-2113-8020 ; 0000-0002-3550-9187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Wei, Mian</creatorcontrib><creatorcontrib>Wang, Baodong</creatorcontrib><creatorcontrib>Wang, Leqi</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Feng, Yongcheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><title>Processes</title><description>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</description><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalysis</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Chemical reactions</subject><subject>Design</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Flow velocity</subject><subject>Fossil fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Magnesium</subject><subject>Marine transportation</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Precious metals</subject><subject>Process parameters</subject><subject>Sea vessels</subject><subject>Sodium hydroxide</subject><subject>Transportation industry</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1Lw0AQhhdRsGgv_oIFb0J0P5rs7tHGr0KlYvUcJptJm9Jk6-4G7L83pYLOZYbhmWfgJeSKs1spDbvbeS6Y4dpkJ2QkhFCJUVyd_pvPyTiEDRvKcKnTbERW7xgQvF1T19G4Rjrr6m2PnUXqagr0FVYdhqZvkykErGgOvhzIh8Z9NxXSKcSIfk-X-xCxPTjyhaDL6DyskL6hr51vYbBdkrMatgHHv_2CfD49fuQvyXzxPMvv54nlEx0TrUUFCmvBshoryZgCyyCdWGOryqjSKsbLLC2HjZoYUTGutbaQ8VIDYinlBbk-enfeffUYYrFxve-Gl4XknGXDfSoG6uZIWe9C8FgXO9-04PcFZ8Uhy-IvS_kDKwpmHg</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Yang, Haoran</creator><creator>Wei, Mian</creator><creator>Wang, Baodong</creator><creator>Wang, Leqi</creator><creator>Chen, Qiuyan</creator><creator>Su, Chang</creator><creator>Feng, Yongcheng</creator><creator>Wang, Xing</creator><creator>Li, Ke</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2113-8020</orcidid><orcidid>https://orcid.org/0000-0002-3550-9187</orcidid></search><sort><creationdate>20240904</creationdate><title>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</title><author>Yang, Haoran ; Wei, Mian ; Wang, Baodong ; Wang, Leqi ; Chen, Qiuyan ; Su, Chang ; Feng, Yongcheng ; Wang, Xing ; Li, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-882da7ef206fed3007ac0a54c9cdd97bc701b65b54c7492d01888ca61b8aeeb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalysis</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Chemical reactions</topic><topic>Design</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Flow velocity</topic><topic>Fossil fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Magnesium</topic><topic>Marine transportation</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Precious metals</topic><topic>Process parameters</topic><topic>Sea vessels</topic><topic>Sodium hydroxide</topic><topic>Transportation industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Wei, Mian</creatorcontrib><creatorcontrib>Wang, Baodong</creatorcontrib><creatorcontrib>Wang, Leqi</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Feng, Yongcheng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoran</au><au>Wei, Mian</au><au>Wang, Baodong</au><au>Wang, Leqi</au><au>Chen, Qiuyan</au><au>Su, Chang</au><au>Feng, Yongcheng</au><au>Wang, Xing</au><au>Li, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance</atitle><jtitle>Processes</jtitle><date>2024-09-04</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>1896</spage><pages>1896-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>At present, the energy consumption and carbon emissions of maritime transportation have raised concerns about environmental issues. A potential way to reduce carbon emissions from vessels is the use of chemical-based carbon capture and storage (CCS) technology. However, this technology faces challenges such as high energy consumption, large space occupation, and high processing costs. Therefore, the development of a technology with low energy consumption and compact CO2 storage is crucial to promote the advancement of CCS technology. This paper introduces a magnesium CO2 battery system that converts CO2 into new energy, in the form of hydrogen, while storing CO2. By preparing highly efficient catalytic electrodes and testing the electrolyte and CO2 flow rate on the battery performance, the optimal process parameters were determined to be Pd/CeO2-oct for the electrodes, a 0.5 mol/L NaOH solution for the electrolyte, and a CO2 flow rate of 1 L/h. The battery system demonstrated high cycling stability and conversion efficiency at a current density of 8 mA·cm−2, with a stable cycling time of 600 min (20 cycles), a cathode hydrogen production of 10.135 mL, and a Faraday efficiency of 97.03%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12091896</doi><orcidid>https://orcid.org/0000-0002-2113-8020</orcidid><orcidid>https://orcid.org/0000-0002-3550-9187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-09, Vol.12 (9), p.1896 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3110670152 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Carbon dioxide Carbon sequestration Catalysis Catalytic converters Cerium oxides Chemical reactions Design Electrodes Electrolytes Electrons Emissions Energy consumption Energy costs Flow velocity Fossil fuels Hydrogen Hydrogen production Magnesium Marine transportation Metal oxides Oxidation Palladium Precious metals Process parameters Sea vessels Sodium hydroxide Transportation industry |
title | Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Influence%20of%20a%20Magnesium-Based%20Carbon%20Dioxide%20Battery%20System%20on%20CO2%20Storage%20Performance&rft.jtitle=Processes&rft.au=Yang,%20Haoran&rft.date=2024-09-04&rft.volume=12&rft.issue=9&rft.spage=1896&rft.pages=1896-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12091896&rft_dat=%3Cproquest_cross%3E3110670152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110670152&rft_id=info:pmid/&rfr_iscdi=true |