Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer
As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adap...
Gespeichert in:
Veröffentlicht in: | Processes 2024-09, Vol.12 (9), p.2032 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2032 |
container_title | Processes |
container_volume | 12 |
creator | Fu, Xinghe Guo, Dingyu Hou, Kai Zhu, Hongchao Chen, Wu Xu, Da |
description | As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability. |
doi_str_mv | 10.3390/pr12092032 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110670144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810839632</galeid><sourcerecordid>A810839632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoKNWLnyDgTWhNMvsvx1LbKhR7UPG4pLuTEt1uapKtbj-9kYo6c3jD4zdvDkPIJWcjAMluto4LJgUDcUTOhBD5UOY8P_43n5IL719ZLMmhSLMzspuprgn01qh1a73x1GqqWjr9rExQwdiWPvY-4IY-e9OuqaKzbr_v6QN2TjVRwod1b3S5DWZj9ljTVR-ZB7vDho5rFe0d0rnDnr7YRv9y7pycaNV4vPjRAXmeTZ8md8PFcn4_GS-GlRAQhhnWyDDNdaIzleCKa6gzzqsMJMiVFEWheC5SKHTBQEHKC6ZQsVzLFASkFQzI1SF36-x7hz6Ur7ZzbTxZAucsyxlPkkiNDtRaNViaVtvgVBW7xo2pbIvaRH9ccFaAzGLygFwfFipnvXeoy60zG-X6krPy-xfl3y_gC6dQeug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110670144</pqid></control><display><type>article</type><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</creator><creatorcontrib>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</creatorcontrib><description>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12092032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive algorithms ; Adaptive control ; Adaptive systems ; Algorithms ; Convergence ; Deep learning ; Diagnostic systems ; Excitation ; Fault diagnosis ; Feature selection ; Fuzzy control ; Fuzzy logic ; Mathematical optimization ; Neural networks ; Optimization ; Particle swarm optimization ; Reactive power ; Waveforms</subject><ispartof>Processes, 2024-09, Vol.12 (9), p.2032</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</cites><orcidid>0000-0002-8479-6661 ; 0009-0002-4986-0688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fu, Xinghe</creatorcontrib><creatorcontrib>Guo, Dingyu</creatorcontrib><creatorcontrib>Hou, Kai</creatorcontrib><creatorcontrib>Zhu, Hongchao</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Xu, Da</creatorcontrib><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><title>Processes</title><description>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Excitation</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Mathematical optimization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Reactive power</subject><subject>Waveforms</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkU9LAzEQxYMoKNWLnyDgTWhNMvsvx1LbKhR7UPG4pLuTEt1uapKtbj-9kYo6c3jD4zdvDkPIJWcjAMluto4LJgUDcUTOhBD5UOY8P_43n5IL719ZLMmhSLMzspuprgn01qh1a73x1GqqWjr9rExQwdiWPvY-4IY-e9OuqaKzbr_v6QN2TjVRwod1b3S5DWZj9ljTVR-ZB7vDho5rFe0d0rnDnr7YRv9y7pycaNV4vPjRAXmeTZ8md8PFcn4_GS-GlRAQhhnWyDDNdaIzleCKa6gzzqsMJMiVFEWheC5SKHTBQEHKC6ZQsVzLFASkFQzI1SF36-x7hz6Ur7ZzbTxZAucsyxlPkkiNDtRaNViaVtvgVBW7xo2pbIvaRH9ccFaAzGLygFwfFipnvXeoy60zG-X6krPy-xfl3y_gC6dQeug</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fu, Xinghe</creator><creator>Guo, Dingyu</creator><creator>Hou, Kai</creator><creator>Zhu, Hongchao</creator><creator>Chen, Wu</creator><creator>Xu, Da</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8479-6661</orcidid><orcidid>https://orcid.org/0009-0002-4986-0688</orcidid></search><sort><creationdate>20240901</creationdate><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><author>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Excitation</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Mathematical optimization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Reactive power</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xinghe</creatorcontrib><creatorcontrib>Guo, Dingyu</creatorcontrib><creatorcontrib>Hou, Kai</creatorcontrib><creatorcontrib>Zhu, Hongchao</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Xu, Da</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xinghe</au><au>Guo, Dingyu</au><au>Hou, Kai</au><au>Zhu, Hongchao</au><au>Chen, Wu</au><au>Xu, Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</atitle><jtitle>Processes</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>2032</spage><pages>2032-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12092032</doi><orcidid>https://orcid.org/0000-0002-8479-6661</orcidid><orcidid>https://orcid.org/0009-0002-4986-0688</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-09, Vol.12 (9), p.2032 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_3110670144 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Adaptive algorithms Adaptive control Adaptive systems Algorithms Convergence Deep learning Diagnostic systems Excitation Fault diagnosis Feature selection Fuzzy control Fuzzy logic Mathematical optimization Neural networks Optimization Particle swarm optimization Reactive power Waveforms |
title | Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20an%20Excitation%20System%20Using%20a%20Fuzzy%20Neural%20Network%20Optimized%20by%20a%20Novel%20Adaptive%20Grey%20Wolf%20Optimizer&rft.jtitle=Processes&rft.au=Fu,%20Xinghe&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=2032&rft.pages=2032-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12092032&rft_dat=%3Cgale_proqu%3EA810839632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110670144&rft_id=info:pmid/&rft_galeid=A810839632&rfr_iscdi=true |