Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer

As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-09, Vol.12 (9), p.2032
Hauptverfasser: Fu, Xinghe, Guo, Dingyu, Hou, Kai, Zhu, Hongchao, Chen, Wu, Xu, Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2032
container_title Processes
container_volume 12
creator Fu, Xinghe
Guo, Dingyu
Hou, Kai
Zhu, Hongchao
Chen, Wu
Xu, Da
description As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.
doi_str_mv 10.3390/pr12092032
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110670144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810839632</galeid><sourcerecordid>A810839632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoKNWLnyDgTWhNMvsvx1LbKhR7UPG4pLuTEt1uapKtbj-9kYo6c3jD4zdvDkPIJWcjAMluto4LJgUDcUTOhBD5UOY8P_43n5IL719ZLMmhSLMzspuprgn01qh1a73x1GqqWjr9rExQwdiWPvY-4IY-e9OuqaKzbr_v6QN2TjVRwod1b3S5DWZj9ljTVR-ZB7vDho5rFe0d0rnDnr7YRv9y7pycaNV4vPjRAXmeTZ8md8PFcn4_GS-GlRAQhhnWyDDNdaIzleCKa6gzzqsMJMiVFEWheC5SKHTBQEHKC6ZQsVzLFASkFQzI1SF36-x7hz6Ur7ZzbTxZAucsyxlPkkiNDtRaNViaVtvgVBW7xo2pbIvaRH9ccFaAzGLygFwfFipnvXeoy60zG-X6krPy-xfl3y_gC6dQeug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110670144</pqid></control><display><type>article</type><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</creator><creatorcontrib>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</creatorcontrib><description>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12092032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Adaptive algorithms ; Adaptive control ; Adaptive systems ; Algorithms ; Convergence ; Deep learning ; Diagnostic systems ; Excitation ; Fault diagnosis ; Feature selection ; Fuzzy control ; Fuzzy logic ; Mathematical optimization ; Neural networks ; Optimization ; Particle swarm optimization ; Reactive power ; Waveforms</subject><ispartof>Processes, 2024-09, Vol.12 (9), p.2032</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</cites><orcidid>0000-0002-8479-6661 ; 0009-0002-4986-0688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fu, Xinghe</creatorcontrib><creatorcontrib>Guo, Dingyu</creatorcontrib><creatorcontrib>Hou, Kai</creatorcontrib><creatorcontrib>Zhu, Hongchao</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Xu, Da</creatorcontrib><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><title>Processes</title><description>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Excitation</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Mathematical optimization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Reactive power</subject><subject>Waveforms</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkU9LAzEQxYMoKNWLnyDgTWhNMvsvx1LbKhR7UPG4pLuTEt1uapKtbj-9kYo6c3jD4zdvDkPIJWcjAMluto4LJgUDcUTOhBD5UOY8P_43n5IL719ZLMmhSLMzspuprgn01qh1a73x1GqqWjr9rExQwdiWPvY-4IY-e9OuqaKzbr_v6QN2TjVRwod1b3S5DWZj9ljTVR-ZB7vDho5rFe0d0rnDnr7YRv9y7pycaNV4vPjRAXmeTZ8md8PFcn4_GS-GlRAQhhnWyDDNdaIzleCKa6gzzqsMJMiVFEWheC5SKHTBQEHKC6ZQsVzLFASkFQzI1SF36-x7hz6Ur7ZzbTxZAucsyxlPkkiNDtRaNViaVtvgVBW7xo2pbIvaRH9ccFaAzGLygFwfFipnvXeoy60zG-X6krPy-xfl3y_gC6dQeug</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fu, Xinghe</creator><creator>Guo, Dingyu</creator><creator>Hou, Kai</creator><creator>Zhu, Hongchao</creator><creator>Chen, Wu</creator><creator>Xu, Da</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8479-6661</orcidid><orcidid>https://orcid.org/0009-0002-4986-0688</orcidid></search><sort><creationdate>20240901</creationdate><title>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</title><author>Fu, Xinghe ; Guo, Dingyu ; Hou, Kai ; Zhu, Hongchao ; Chen, Wu ; Xu, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-6ede0e57f4f6a4eb1f3d611c63939b9288a172538f803a35180aea07f953235c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Excitation</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Mathematical optimization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Reactive power</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xinghe</creatorcontrib><creatorcontrib>Guo, Dingyu</creatorcontrib><creatorcontrib>Hou, Kai</creatorcontrib><creatorcontrib>Zhu, Hongchao</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Xu, Da</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xinghe</au><au>Guo, Dingyu</au><au>Hou, Kai</au><au>Zhu, Hongchao</au><au>Chen, Wu</au><au>Xu, Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer</atitle><jtitle>Processes</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>2032</spage><pages>2032-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>As the excitation system is the core control component of a synchronous condenser system, its fault diagnosis is crucial for maximizing the reactive power compensation capability of the synchronous condenser. To achieve accurate diagnosis of excitation system faults, this paper proposes a novel adaptive grey wolf optimizer (AGWO) to optimize the initial weights and biases of the fuzzy neural network (FNN), thereby enhancing the diagnostic performance of the FNN model. Firstly, an improved nonlinear convergence factor is introduced to balance the algorithm’s global exploration and local exploitation capabilities. Secondly, a new adaptive position update strategy that enhances the interaction capability of the position information is proposed to improve the algorithm’s ability to jump out of the local optimum and accelerate the convergence speed. In addition, it is demonstrated that the proposed AGWO algorithm has global convergence. By selecting real fault waveforms of the excitation system for case validation, the results show that the proposed AGWO has a better convergence performance compared to the grey wolf optimizer (GWO), particle swarm optimization (PSO), whale optimization algorithm (WOA), and marine predator algorithm (MPA). Specifically, compared to the FNN and GWO-FNN models, the AGWO-FNN model improves average diagnostic accuracy on the test set by 4.2% and 2.5%, respectively. Therefore, the proposed AGWO-FNN effectively enhances the accuracy of fault diagnosis in the excitation system and exhibits stronger diagnostic capability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12092032</doi><orcidid>https://orcid.org/0000-0002-8479-6661</orcidid><orcidid>https://orcid.org/0009-0002-4986-0688</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-09, Vol.12 (9), p.2032
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_3110670144
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptive algorithms
Adaptive control
Adaptive systems
Algorithms
Convergence
Deep learning
Diagnostic systems
Excitation
Fault diagnosis
Feature selection
Fuzzy control
Fuzzy logic
Mathematical optimization
Neural networks
Optimization
Particle swarm optimization
Reactive power
Waveforms
title Fault Diagnosis of an Excitation System Using a Fuzzy Neural Network Optimized by a Novel Adaptive Grey Wolf Optimizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20an%20Excitation%20System%20Using%20a%20Fuzzy%20Neural%20Network%20Optimized%20by%20a%20Novel%20Adaptive%20Grey%20Wolf%20Optimizer&rft.jtitle=Processes&rft.au=Fu,%20Xinghe&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=2032&rft.pages=2032-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12092032&rft_dat=%3Cgale_proqu%3EA810839632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110670144&rft_id=info:pmid/&rft_galeid=A810839632&rfr_iscdi=true