Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering

The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the disl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2024-10, Vol.95 (10), p.n/a
Hauptverfasser: Zou, Tao, Dong, Yan‐Wu, Jiang, Zhou‐Hua, Liu, Li‐Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Steel research international
container_volume 95
creator Zou, Tao
Dong, Yan‐Wu
Jiang, Zhou‐Hua
Liu, Li‐Meng
description The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C). By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.
doi_str_mv 10.1002/srin.202400438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110646886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110646886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOOaungOeO_OaLE2OUtQNtgluihcJbZPOji2ZyYr0vzdlokff5b0H38_78UXoGsgYCElvg2_sOCUpI4RRcYYGILhMKGNv57HmAAnlgl6iUQhbEoMKwTM2QO-rY6s77CxeHX3RWDwtvDa2sRtcWI1z37lNbCu8du3mw5oQsKvxoojrDAaybCa5X7jXSBuzw7r1Pbk2-4Ppqyt0URe7YEY_eYheHu7X-TSZPz3O8rt5UsWTRcKkyQQtZSEhlZyxWjMtAaoJkQI4TWvQLGPVRJdG1IYbUcmMM5GBKGVZlZoO0c1p7sG7z9aEo9q61tu4UlEAwhmP70bV-KSqvAvBm1odfLMvfKeAqN5F1buofl2MgDwBX83OdP-o1ep5tvxjvwE-OnVx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110646886</pqid></control><display><type>article</type><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</creator><creatorcontrib>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</creatorcontrib><description>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C). By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202400438</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>10Ni5CrMoV steel ; Austenite ; Bulk density ; Cryogenic properties ; Cryogenic temperature ; cryogenic toughness ; Cryogenics ; Deformation analysis ; Deformation effects ; Dislocation density ; Dislocation pinning ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; Grain size ; Heat treating ; Martensite ; Mechanical properties ; Misalignment ; Nickel chromium molybdenum steels ; Plastic deformation ; reversed austenite ; Strain analysis ; Strain hardening ; Stress concentration ; Stress propagation ; Temperature ; Tempering ; Transition temperature</subject><ispartof>Steel research international, 2024-10, Vol.95 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</cites><orcidid>0000-0001-9094-4491 ; 0000-0002-3246-9677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202400438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202400438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Dong, Yan‐Wu</creatorcontrib><creatorcontrib>Jiang, Zhou‐Hua</creatorcontrib><creatorcontrib>Liu, Li‐Meng</creatorcontrib><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><title>Steel research international</title><description>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C). By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</description><subject>10Ni5CrMoV steel</subject><subject>Austenite</subject><subject>Bulk density</subject><subject>Cryogenic properties</subject><subject>Cryogenic temperature</subject><subject>cryogenic toughness</subject><subject>Cryogenics</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Dislocation density</subject><subject>Dislocation pinning</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Martensite</subject><subject>Mechanical properties</subject><subject>Misalignment</subject><subject>Nickel chromium molybdenum steels</subject><subject>Plastic deformation</subject><subject>reversed austenite</subject><subject>Strain analysis</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>Stress propagation</subject><subject>Temperature</subject><subject>Tempering</subject><subject>Transition temperature</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOOaungOeO_OaLE2OUtQNtgluihcJbZPOji2ZyYr0vzdlokff5b0H38_78UXoGsgYCElvg2_sOCUpI4RRcYYGILhMKGNv57HmAAnlgl6iUQhbEoMKwTM2QO-rY6s77CxeHX3RWDwtvDa2sRtcWI1z37lNbCu8du3mw5oQsKvxoojrDAaybCa5X7jXSBuzw7r1Pbk2-4Ppqyt0URe7YEY_eYheHu7X-TSZPz3O8rt5UsWTRcKkyQQtZSEhlZyxWjMtAaoJkQI4TWvQLGPVRJdG1IYbUcmMM5GBKGVZlZoO0c1p7sG7z9aEo9q61tu4UlEAwhmP70bV-KSqvAvBm1odfLMvfKeAqN5F1buofl2MgDwBX83OdP-o1ep5tvxjvwE-OnVx</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zou, Tao</creator><creator>Dong, Yan‐Wu</creator><creator>Jiang, Zhou‐Hua</creator><creator>Liu, Li‐Meng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9094-4491</orcidid><orcidid>https://orcid.org/0000-0002-3246-9677</orcidid></search><sort><creationdate>202410</creationdate><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><author>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>10Ni5CrMoV steel</topic><topic>Austenite</topic><topic>Bulk density</topic><topic>Cryogenic properties</topic><topic>Cryogenic temperature</topic><topic>cryogenic toughness</topic><topic>Cryogenics</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Dislocation density</topic><topic>Dislocation pinning</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Martensite</topic><topic>Mechanical properties</topic><topic>Misalignment</topic><topic>Nickel chromium molybdenum steels</topic><topic>Plastic deformation</topic><topic>reversed austenite</topic><topic>Strain analysis</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>Stress propagation</topic><topic>Temperature</topic><topic>Tempering</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Dong, Yan‐Wu</creatorcontrib><creatorcontrib>Jiang, Zhou‐Hua</creatorcontrib><creatorcontrib>Liu, Li‐Meng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Tao</au><au>Dong, Yan‐Wu</au><au>Jiang, Zhou‐Hua</au><au>Liu, Li‐Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</atitle><jtitle>Steel research international</jtitle><date>2024-10</date><risdate>2024</risdate><volume>95</volume><issue>10</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C). By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202400438</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9094-4491</orcidid><orcidid>https://orcid.org/0000-0002-3246-9677</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2024-10, Vol.95 (10), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_3110646886
source Wiley Online Library Journals Frontfile Complete
subjects 10Ni5CrMoV steel
Austenite
Bulk density
Cryogenic properties
Cryogenic temperature
cryogenic toughness
Cryogenics
Deformation analysis
Deformation effects
Dislocation density
Dislocation pinning
Ductile fracture
Ductile-brittle transition
Grain boundaries
Grain size
Heat treating
Martensite
Mechanical properties
Misalignment
Nickel chromium molybdenum steels
Plastic deformation
reversed austenite
Strain analysis
Strain hardening
Stress concentration
Stress propagation
Temperature
Tempering
Transition temperature
title Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Strain%20Hardening%20and%20Cryogenic%20Toughness%20of%20Marine%2010Ni5CrMoV%20Steel%20during%20Tempering&rft.jtitle=Steel%20research%20international&rft.au=Zou,%20Tao&rft.date=2024-10&rft.volume=95&rft.issue=10&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202400438&rft_dat=%3Cproquest_cross%3E3110646886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110646886&rft_id=info:pmid/&rfr_iscdi=true