Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering
The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the disl...
Gespeichert in:
Veröffentlicht in: | Steel research international 2024-10, Vol.95 (10), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Steel research international |
container_volume | 95 |
creator | Zou, Tao Dong, Yan‐Wu Jiang, Zhou‐Hua Liu, Li‐Meng |
description | The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C).
By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel. |
doi_str_mv | 10.1002/srin.202400438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110646886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110646886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOOaungOeO_OaLE2OUtQNtgluihcJbZPOji2ZyYr0vzdlokff5b0H38_78UXoGsgYCElvg2_sOCUpI4RRcYYGILhMKGNv57HmAAnlgl6iUQhbEoMKwTM2QO-rY6s77CxeHX3RWDwtvDa2sRtcWI1z37lNbCu8du3mw5oQsKvxoojrDAaybCa5X7jXSBuzw7r1Pbk2-4Ppqyt0URe7YEY_eYheHu7X-TSZPz3O8rt5UsWTRcKkyQQtZSEhlZyxWjMtAaoJkQI4TWvQLGPVRJdG1IYbUcmMM5GBKGVZlZoO0c1p7sG7z9aEo9q61tu4UlEAwhmP70bV-KSqvAvBm1odfLMvfKeAqN5F1buofl2MgDwBX83OdP-o1ep5tvxjvwE-OnVx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110646886</pqid></control><display><type>article</type><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</creator><creatorcontrib>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</creatorcontrib><description>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C).
By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202400438</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>10Ni5CrMoV steel ; Austenite ; Bulk density ; Cryogenic properties ; Cryogenic temperature ; cryogenic toughness ; Cryogenics ; Deformation analysis ; Deformation effects ; Dislocation density ; Dislocation pinning ; Ductile fracture ; Ductile-brittle transition ; Grain boundaries ; Grain size ; Heat treating ; Martensite ; Mechanical properties ; Misalignment ; Nickel chromium molybdenum steels ; Plastic deformation ; reversed austenite ; Strain analysis ; Strain hardening ; Stress concentration ; Stress propagation ; Temperature ; Tempering ; Transition temperature</subject><ispartof>Steel research international, 2024-10, Vol.95 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</cites><orcidid>0000-0001-9094-4491 ; 0000-0002-3246-9677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202400438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202400438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Dong, Yan‐Wu</creatorcontrib><creatorcontrib>Jiang, Zhou‐Hua</creatorcontrib><creatorcontrib>Liu, Li‐Meng</creatorcontrib><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><title>Steel research international</title><description>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C).
By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</description><subject>10Ni5CrMoV steel</subject><subject>Austenite</subject><subject>Bulk density</subject><subject>Cryogenic properties</subject><subject>Cryogenic temperature</subject><subject>cryogenic toughness</subject><subject>Cryogenics</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Dislocation density</subject><subject>Dislocation pinning</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Martensite</subject><subject>Mechanical properties</subject><subject>Misalignment</subject><subject>Nickel chromium molybdenum steels</subject><subject>Plastic deformation</subject><subject>reversed austenite</subject><subject>Strain analysis</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>Stress propagation</subject><subject>Temperature</subject><subject>Tempering</subject><subject>Transition temperature</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOOaungOeO_OaLE2OUtQNtgluihcJbZPOji2ZyYr0vzdlokff5b0H38_78UXoGsgYCElvg2_sOCUpI4RRcYYGILhMKGNv57HmAAnlgl6iUQhbEoMKwTM2QO-rY6s77CxeHX3RWDwtvDa2sRtcWI1z37lNbCu8du3mw5oQsKvxoojrDAaybCa5X7jXSBuzw7r1Pbk2-4Ppqyt0URe7YEY_eYheHu7X-TSZPz3O8rt5UsWTRcKkyQQtZSEhlZyxWjMtAaoJkQI4TWvQLGPVRJdG1IYbUcmMM5GBKGVZlZoO0c1p7sG7z9aEo9q61tu4UlEAwhmP70bV-KSqvAvBm1odfLMvfKeAqN5F1buofl2MgDwBX83OdP-o1ep5tvxjvwE-OnVx</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zou, Tao</creator><creator>Dong, Yan‐Wu</creator><creator>Jiang, Zhou‐Hua</creator><creator>Liu, Li‐Meng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9094-4491</orcidid><orcidid>https://orcid.org/0000-0002-3246-9677</orcidid></search><sort><creationdate>202410</creationdate><title>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</title><author>Zou, Tao ; Dong, Yan‐Wu ; Jiang, Zhou‐Hua ; Liu, Li‐Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-49e783b9a9129644fd4d911c50981632f1d474c5dbe8fe6e8c97648718b9bcbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>10Ni5CrMoV steel</topic><topic>Austenite</topic><topic>Bulk density</topic><topic>Cryogenic properties</topic><topic>Cryogenic temperature</topic><topic>cryogenic toughness</topic><topic>Cryogenics</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Dislocation density</topic><topic>Dislocation pinning</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Martensite</topic><topic>Mechanical properties</topic><topic>Misalignment</topic><topic>Nickel chromium molybdenum steels</topic><topic>Plastic deformation</topic><topic>reversed austenite</topic><topic>Strain analysis</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>Stress propagation</topic><topic>Temperature</topic><topic>Tempering</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Dong, Yan‐Wu</creatorcontrib><creatorcontrib>Jiang, Zhou‐Hua</creatorcontrib><creatorcontrib>Liu, Li‐Meng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Tao</au><au>Dong, Yan‐Wu</au><au>Jiang, Zhou‐Hua</au><au>Liu, Li‐Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering</atitle><jtitle>Steel research international</jtitle><date>2024-10</date><risdate>2024</risdate><volume>95</volume><issue>10</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The tempering process is applied in marine 10Ni5CrMoV steel to study microstructure, and mechanical properties by multi‐scale characterizations, strain hardening behavior, and cryogenic toughening mechanism are further investigated. As the tempering temperature increases from 590 to 630 °C, the dislocation density decreases by up to 25% and the austenite volume fraction decreases by up to 35%. Additionally, the morphology of austenite changes from strip to bulk, which weakened the pinning effect on the laths, leading to a coarsened martensite and an increase in the equivalent grain size. Based on the modified Crussard–Jaoul analysis, the specimens at different tempering temperatures exhibit a single‐stage strain hardening behavior during plastic deformation. The increase in strength is attributed to the continuous transformation‐induced plasticity effect and the increasing dislocation density. Furthermore, high austenite volume fraction and the proportion of grain boundary misorientation above 45° promote the release of stress concentration and hinder the propagation of cracks. This results in an increase in the ductile–brittle transition temperature (DBTT) of the specimens from −105 to −135 °C. At a tempering temperature of 610 °C, the specimen demonstrates an outstanding balance between yield strength (868 MPa) and cryogenic toughness (DBTT of −135 °C).
By adjusting the tempering temperature, the formation of strip reversed austenite and high dislocation density is promoted, which helps to improve the strain hardening ability and cryogenic toughness of marine 10Ni5CrMoV steel.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202400438</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9094-4491</orcidid><orcidid>https://orcid.org/0000-0002-3246-9677</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2024-10, Vol.95 (10), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_3110646886 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 10Ni5CrMoV steel Austenite Bulk density Cryogenic properties Cryogenic temperature cryogenic toughness Cryogenics Deformation analysis Deformation effects Dislocation density Dislocation pinning Ductile fracture Ductile-brittle transition Grain boundaries Grain size Heat treating Martensite Mechanical properties Misalignment Nickel chromium molybdenum steels Plastic deformation reversed austenite Strain analysis Strain hardening Stress concentration Stress propagation Temperature Tempering Transition temperature |
title | Study on Strain Hardening and Cryogenic Toughness of Marine 10Ni5CrMoV Steel during Tempering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Strain%20Hardening%20and%20Cryogenic%20Toughness%20of%20Marine%2010Ni5CrMoV%20Steel%20during%20Tempering&rft.jtitle=Steel%20research%20international&rft.au=Zou,%20Tao&rft.date=2024-10&rft.volume=95&rft.issue=10&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202400438&rft_dat=%3Cproquest_cross%3E3110646886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110646886&rft_id=info:pmid/&rfr_iscdi=true |