Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater

Developing highly efficient catalysts for oxygen evolution reactions (OER) in complex water environments is crucial for promoting the photovoltaic electrolysis of water splitting for hydrogen production in arid areas. However, traditional catalysts often exhibit limitations in terms of reaction kine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2024-10, Vol.154 (10), p.5350-5358
Hauptverfasser: Cao, Jianzhao, Riaz, Salman, Qi, Zhaoxiang, Zhao, Ke, Qi, Ying, Wei, Peng, Xie, Yahong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5358
container_issue 10
container_start_page 5350
container_title Catalysis letters
container_volume 154
creator Cao, Jianzhao
Riaz, Salman
Qi, Zhaoxiang
Zhao, Ke
Qi, Ying
Wei, Peng
Xie, Yahong
description Developing highly efficient catalysts for oxygen evolution reactions (OER) in complex water environments is crucial for promoting the photovoltaic electrolysis of water splitting for hydrogen production in arid areas. However, traditional catalysts often exhibit limitations in terms of reaction kinetics and electrode corrosion resistance. In this work, we successfully prepared a self-supporting perovskite complex oxide La 0.7 Sr 0.3 CoO 3-δ /NF (LSC/NF) catalyst by means of simple hydrothermal synthesis combined with programmed annealing, and successfully applied to OER reaction in oilfield wastewater. In alkaline oilfield wastewater, at a current density of 10 mA cm −2 , LSC/NF requires only 411 mV of overpotential, which is lower than that of LSC (493 mV) and traditional catalyst RuO 2 (451 mV), suggesting a high OER catalytic activity. The good electrocatalytic activity can be attributed to its superhydrophilicity, increased electrochemical active surface area, faster reaction kinetics and higher oxygen vacancy concentration. This research offers valuable new insights for the development of OER electrocatalysts with high catalytic activity in complex water systems in arid areas. Graphical Abstract A self-supporting perovskite oxide catalyst La 0.7 Sr 0.3 CoO 3-δ /NF was synthesized by a simple process combining hydrothermal and annealing. The growth of perovskite oxide nanosheets directly on the conductive nickel foam matrix gives the catalyst a strong hydrophilicity and significantly expands its electrochemical active surface area, thus enhancing the OER activity of LSC/NF in oilfield wastewater.
doi_str_mv 10.1007/s10562-024-04753-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110574605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110574605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-72432caa44744cadd9e8c831c1154d021423c46a5803263dc8598c5173ed52c53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuA62iek5mlFF9QqFjF7kJI7rSp42RMZqr9906t4M7VPYvznQtflp1TckkJUVeJEpkzTJjARCjJsTjIRlQqhgtVLg6HTCjFXLHFcXaS0poQUipajrLlvG8hrrYuhnbla2_RHOoKp75tQ-zAoUeIYZPefAdo9uUdJFSFOMTtEhp0swl13_nQoCcwdhcS8g2a-bryUDv0alIHn6aDeJodVaZOcPZ7x9nL7c3z5B5PZ3cPk-sptoyQDismOLPGCKGEsMa5EgpbcGoplcIRRgXjVuRGFoSznDtbyLKwkioOTjIr-Ti72O-2MXz0kDq9Dn1shpea00GSEjnZtdi-ZWNIKUKl2-jfTdxqSvROqN4L1YNQ_SNUiwHieygN5WYJ8W_6H-objcp5sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110574605</pqid></control><display><type>article</type><title>Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Jianzhao ; Riaz, Salman ; Qi, Zhaoxiang ; Zhao, Ke ; Qi, Ying ; Wei, Peng ; Xie, Yahong</creator><creatorcontrib>Cao, Jianzhao ; Riaz, Salman ; Qi, Zhaoxiang ; Zhao, Ke ; Qi, Ying ; Wei, Peng ; Xie, Yahong</creatorcontrib><description>Developing highly efficient catalysts for oxygen evolution reactions (OER) in complex water environments is crucial for promoting the photovoltaic electrolysis of water splitting for hydrogen production in arid areas. However, traditional catalysts often exhibit limitations in terms of reaction kinetics and electrode corrosion resistance. In this work, we successfully prepared a self-supporting perovskite complex oxide La 0.7 Sr 0.3 CoO 3-δ /NF (LSC/NF) catalyst by means of simple hydrothermal synthesis combined with programmed annealing, and successfully applied to OER reaction in oilfield wastewater. In alkaline oilfield wastewater, at a current density of 10 mA cm −2 , LSC/NF requires only 411 mV of overpotential, which is lower than that of LSC (493 mV) and traditional catalyst RuO 2 (451 mV), suggesting a high OER catalytic activity. The good electrocatalytic activity can be attributed to its superhydrophilicity, increased electrochemical active surface area, faster reaction kinetics and higher oxygen vacancy concentration. This research offers valuable new insights for the development of OER electrocatalysts with high catalytic activity in complex water systems in arid areas. Graphical Abstract A self-supporting perovskite oxide catalyst La 0.7 Sr 0.3 CoO 3-δ /NF was synthesized by a simple process combining hydrothermal and annealing. The growth of perovskite oxide nanosheets directly on the conductive nickel foam matrix gives the catalyst a strong hydrophilicity and significantly expands its electrochemical active surface area, thus enhancing the OER activity of LSC/NF in oilfield wastewater.</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-024-04753-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Aridity ; Catalysis ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Contact angle ; Corrosion products ; Corrosion resistance ; Electrocatalysts ; Electrodes ; Electrolysis ; Electrons ; Hydrogen production ; Hydrophilicity ; Industrial Chemistry/Chemical Engineering ; Metal foams ; Nickel ; Oil field equipment ; Oil fields ; Organometallic Chemistry ; Oxygen evolution reactions ; Perovskites ; Physical Chemistry ; Reaction kinetics ; Spectrum analysis ; Surface area ; Temperature ; Thermogravimetric analysis ; Wastewater ; Water splitting</subject><ispartof>Catalysis letters, 2024-10, Vol.154 (10), p.5350-5358</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-72432caa44744cadd9e8c831c1154d021423c46a5803263dc8598c5173ed52c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-024-04753-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-024-04753-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cao, Jianzhao</creatorcontrib><creatorcontrib>Riaz, Salman</creatorcontrib><creatorcontrib>Qi, Zhaoxiang</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Qi, Ying</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Xie, Yahong</creatorcontrib><title>Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Developing highly efficient catalysts for oxygen evolution reactions (OER) in complex water environments is crucial for promoting the photovoltaic electrolysis of water splitting for hydrogen production in arid areas. However, traditional catalysts often exhibit limitations in terms of reaction kinetics and electrode corrosion resistance. In this work, we successfully prepared a self-supporting perovskite complex oxide La 0.7 Sr 0.3 CoO 3-δ /NF (LSC/NF) catalyst by means of simple hydrothermal synthesis combined with programmed annealing, and successfully applied to OER reaction in oilfield wastewater. In alkaline oilfield wastewater, at a current density of 10 mA cm −2 , LSC/NF requires only 411 mV of overpotential, which is lower than that of LSC (493 mV) and traditional catalyst RuO 2 (451 mV), suggesting a high OER catalytic activity. The good electrocatalytic activity can be attributed to its superhydrophilicity, increased electrochemical active surface area, faster reaction kinetics and higher oxygen vacancy concentration. This research offers valuable new insights for the development of OER electrocatalysts with high catalytic activity in complex water systems in arid areas. Graphical Abstract A self-supporting perovskite oxide catalyst La 0.7 Sr 0.3 CoO 3-δ /NF was synthesized by a simple process combining hydrothermal and annealing. The growth of perovskite oxide nanosheets directly on the conductive nickel foam matrix gives the catalyst a strong hydrophilicity and significantly expands its electrochemical active surface area, thus enhancing the OER activity of LSC/NF in oilfield wastewater.</description><subject>Annealing</subject><subject>Aridity</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contact angle</subject><subject>Corrosion products</subject><subject>Corrosion resistance</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrons</subject><subject>Hydrogen production</subject><subject>Hydrophilicity</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Metal foams</subject><subject>Nickel</subject><subject>Oil field equipment</subject><subject>Oil fields</subject><subject>Organometallic Chemistry</subject><subject>Oxygen evolution reactions</subject><subject>Perovskites</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Spectrum analysis</subject><subject>Surface area</subject><subject>Temperature</subject><subject>Thermogravimetric analysis</subject><subject>Wastewater</subject><subject>Water splitting</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFb_gKuA62iek5mlFF9QqFjF7kJI7rSp42RMZqr9906t4M7VPYvznQtflp1TckkJUVeJEpkzTJjARCjJsTjIRlQqhgtVLg6HTCjFXLHFcXaS0poQUipajrLlvG8hrrYuhnbla2_RHOoKp75tQ-zAoUeIYZPefAdo9uUdJFSFOMTtEhp0swl13_nQoCcwdhcS8g2a-bryUDv0alIHn6aDeJodVaZOcPZ7x9nL7c3z5B5PZ3cPk-sptoyQDismOLPGCKGEsMa5EgpbcGoplcIRRgXjVuRGFoSznDtbyLKwkioOTjIr-Ti72O-2MXz0kDq9Dn1shpea00GSEjnZtdi-ZWNIKUKl2-jfTdxqSvROqN4L1YNQ_SNUiwHieygN5WYJ8W_6H-objcp5sQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cao, Jianzhao</creator><creator>Riaz, Salman</creator><creator>Qi, Zhaoxiang</creator><creator>Zhao, Ke</creator><creator>Qi, Ying</creator><creator>Wei, Peng</creator><creator>Xie, Yahong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater</title><author>Cao, Jianzhao ; Riaz, Salman ; Qi, Zhaoxiang ; Zhao, Ke ; Qi, Ying ; Wei, Peng ; Xie, Yahong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-72432caa44744cadd9e8c831c1154d021423c46a5803263dc8598c5173ed52c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Aridity</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contact angle</topic><topic>Corrosion products</topic><topic>Corrosion resistance</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrons</topic><topic>Hydrogen production</topic><topic>Hydrophilicity</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Metal foams</topic><topic>Nickel</topic><topic>Oil field equipment</topic><topic>Oil fields</topic><topic>Organometallic Chemistry</topic><topic>Oxygen evolution reactions</topic><topic>Perovskites</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Spectrum analysis</topic><topic>Surface area</topic><topic>Temperature</topic><topic>Thermogravimetric analysis</topic><topic>Wastewater</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jianzhao</creatorcontrib><creatorcontrib>Riaz, Salman</creatorcontrib><creatorcontrib>Qi, Zhaoxiang</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Qi, Ying</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Xie, Yahong</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jianzhao</au><au>Riaz, Salman</au><au>Qi, Zhaoxiang</au><au>Zhao, Ke</au><au>Qi, Ying</au><au>Wei, Peng</au><au>Xie, Yahong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>154</volume><issue>10</issue><spage>5350</spage><epage>5358</epage><pages>5350-5358</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Developing highly efficient catalysts for oxygen evolution reactions (OER) in complex water environments is crucial for promoting the photovoltaic electrolysis of water splitting for hydrogen production in arid areas. However, traditional catalysts often exhibit limitations in terms of reaction kinetics and electrode corrosion resistance. In this work, we successfully prepared a self-supporting perovskite complex oxide La 0.7 Sr 0.3 CoO 3-δ /NF (LSC/NF) catalyst by means of simple hydrothermal synthesis combined with programmed annealing, and successfully applied to OER reaction in oilfield wastewater. In alkaline oilfield wastewater, at a current density of 10 mA cm −2 , LSC/NF requires only 411 mV of overpotential, which is lower than that of LSC (493 mV) and traditional catalyst RuO 2 (451 mV), suggesting a high OER catalytic activity. The good electrocatalytic activity can be attributed to its superhydrophilicity, increased electrochemical active surface area, faster reaction kinetics and higher oxygen vacancy concentration. This research offers valuable new insights for the development of OER electrocatalysts with high catalytic activity in complex water systems in arid areas. Graphical Abstract A self-supporting perovskite oxide catalyst La 0.7 Sr 0.3 CoO 3-δ /NF was synthesized by a simple process combining hydrothermal and annealing. The growth of perovskite oxide nanosheets directly on the conductive nickel foam matrix gives the catalyst a strong hydrophilicity and significantly expands its electrochemical active surface area, thus enhancing the OER activity of LSC/NF in oilfield wastewater.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-024-04753-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2024-10, Vol.154 (10), p.5350-5358
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_3110574605
source SpringerLink Journals - AutoHoldings
subjects Annealing
Aridity
Catalysis
Catalysts
Catalytic activity
Chemical synthesis
Chemistry
Chemistry and Materials Science
Contact angle
Corrosion products
Corrosion resistance
Electrocatalysts
Electrodes
Electrolysis
Electrons
Hydrogen production
Hydrophilicity
Industrial Chemistry/Chemical Engineering
Metal foams
Nickel
Oil field equipment
Oil fields
Organometallic Chemistry
Oxygen evolution reactions
Perovskites
Physical Chemistry
Reaction kinetics
Spectrum analysis
Surface area
Temperature
Thermogravimetric analysis
Wastewater
Water splitting
title Superhydrophilic Self-supported Perovskite Oxides for Oxygen Evolution Reactions in Oilfield Wastewater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophilic%20Self-supported%20Perovskite%20Oxides%20for%20Oxygen%20Evolution%20Reactions%20in%20Oilfield%20Wastewater&rft.jtitle=Catalysis%20letters&rft.au=Cao,%20Jianzhao&rft.date=2024-10-01&rft.volume=154&rft.issue=10&rft.spage=5350&rft.epage=5358&rft.pages=5350-5358&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-024-04753-4&rft_dat=%3Cproquest_cross%3E3110574605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110574605&rft_id=info:pmid/&rfr_iscdi=true