Learning bivariate scoring functions for ranking

State-of-the-art Learning-to-Rank algorithms, e.g., λ MART , rely on univariate scoring functions to score a list of items. Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. Nevertheless, ranking deals with producing an effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discover Computing 2024-09, Vol.27 (1), p.33, Article 33
Hauptverfasser: Nardini, Franco Maria, Trani, Roberto, Venturini, Rossano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 33
container_title Discover Computing
container_volume 27
creator Nardini, Franco Maria
Trani, Roberto
Venturini, Rossano
description State-of-the-art Learning-to-Rank algorithms, e.g., λ MART , rely on univariate scoring functions to score a list of items. Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the Lambda Bivariate ( LB ) framework—that allows to learn effective bivariate scoring functions for ranking using gradient boosting trees. We discuss the three main ingredients of LB : ( i ) the invariance to permutations property, ( ii ) the function aggregating the scores of all pairs into the per-item scores, and ( iii ) the optimization process to learn bivariate scoring functions for ranking using any differentiable loss functions. We apply LB to the λ Rank loss and we show that it results in learning a bivariate version of λ MART —we call it Bi- λ MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss functions, we also discuss its application to the Softmax loss.
doi_str_mv 10.1007/s10791-024-09444-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110560825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110560825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3e4cd8599b0dfd38e8b0081d6d581aa850144b4a8732d52f0da24560b30fc4633</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeLneP-Cq4Do6SSZtspSLLyi40XVIm0Tqo61JK_jvTa2gK1czDOecmfkIOWVwzgCqi8Sg0owCRwoaEWl1QDZco6Jca374pz8mu5S6BqSoBC8BNgRqb2Pf9U9F033Y2NnJF6kd4jIJc99O3dCnIgyxiLZ_ydMTchTsa_K7n7olj9dXD_tbWt_f3O0va9pyxIkKj61TUusGXHBCedUAKOZKJxWzVklgiA1alQ9xkgdwlqMsoREQWiyF2JKzNXeMw_vs02Sehzn2eaURjEGWKi6ziq-qNg4pRR_MGLs3Gz8NA7PAMSsck-GYbzimyiaxmtK4_Onjb_Q_ri8-qmXT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110560825</pqid></control><display><type>article</type><title>Learning bivariate scoring functions for ranking</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Nardini, Franco Maria ; Trani, Roberto ; Venturini, Rossano</creator><creatorcontrib>Nardini, Franco Maria ; Trani, Roberto ; Venturini, Rossano</creatorcontrib><description>State-of-the-art Learning-to-Rank algorithms, e.g., λ MART , rely on univariate scoring functions to score a list of items. Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the Lambda Bivariate ( LB ) framework—that allows to learn effective bivariate scoring functions for ranking using gradient boosting trees. We discuss the three main ingredients of LB : ( i ) the invariance to permutations property, ( ii ) the function aggregating the scores of all pairs into the per-item scores, and ( iii ) the optimization process to learn bivariate scoring functions for ranking using any differentiable loss functions. We apply LB to the λ Rank loss and we show that it results in learning a bivariate version of λ MART —we call it Bi- λ MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss functions, we also discuss its application to the Softmax loss.</description><identifier>ISSN: 2948-2992</identifier><identifier>ISSN: 1386-4564</identifier><identifier>EISSN: 2948-2992</identifier><identifier>EISSN: 1573-7659</identifier><identifier>DOI: 10.1007/s10791-024-09444-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Bivariate analysis ; Computer Science ; Data Mining and Knowledge Discovery ; Data Structures and Information Theory ; Information Storage and Retrieval ; Machine learning ; Natural Language Processing (NLP) ; Neural networks ; Pattern Recognition ; Permutations ; Ranking</subject><ispartof>Discover Computing, 2024-09, Vol.27 (1), p.33, Article 33</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-3e4cd8599b0dfd38e8b0081d6d581aa850144b4a8732d52f0da24560b30fc4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10791-024-09444-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10791-024-09444-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nardini, Franco Maria</creatorcontrib><creatorcontrib>Trani, Roberto</creatorcontrib><creatorcontrib>Venturini, Rossano</creatorcontrib><title>Learning bivariate scoring functions for ranking</title><title>Discover Computing</title><addtitle>Discov Computing</addtitle><description>State-of-the-art Learning-to-Rank algorithms, e.g., λ MART , rely on univariate scoring functions to score a list of items. Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the Lambda Bivariate ( LB ) framework—that allows to learn effective bivariate scoring functions for ranking using gradient boosting trees. We discuss the three main ingredients of LB : ( i ) the invariance to permutations property, ( ii ) the function aggregating the scores of all pairs into the per-item scores, and ( iii ) the optimization process to learn bivariate scoring functions for ranking using any differentiable loss functions. We apply LB to the λ Rank loss and we show that it results in learning a bivariate version of λ MART —we call it Bi- λ MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss functions, we also discuss its application to the Softmax loss.</description><subject>Algorithms</subject><subject>Bivariate analysis</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data Structures and Information Theory</subject><subject>Information Storage and Retrieval</subject><subject>Machine learning</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Permutations</subject><subject>Ranking</subject><issn>2948-2992</issn><issn>1386-4564</issn><issn>2948-2992</issn><issn>1573-7659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxTAQhYMoeLneP-Cq4Do6SSZtspSLLyi40XVIm0Tqo61JK_jvTa2gK1czDOecmfkIOWVwzgCqi8Sg0owCRwoaEWl1QDZco6Jca374pz8mu5S6BqSoBC8BNgRqb2Pf9U9F033Y2NnJF6kd4jIJc99O3dCnIgyxiLZ_ydMTchTsa_K7n7olj9dXD_tbWt_f3O0va9pyxIkKj61TUusGXHBCedUAKOZKJxWzVklgiA1alQ9xkgdwlqMsoREQWiyF2JKzNXeMw_vs02Sehzn2eaURjEGWKi6ziq-qNg4pRR_MGLs3Gz8NA7PAMSsck-GYbzimyiaxmtK4_Onjb_Q_ri8-qmXT</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Nardini, Franco Maria</creator><creator>Trani, Roberto</creator><creator>Venturini, Rossano</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240927</creationdate><title>Learning bivariate scoring functions for ranking</title><author>Nardini, Franco Maria ; Trani, Roberto ; Venturini, Rossano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3e4cd8599b0dfd38e8b0081d6d581aa850144b4a8732d52f0da24560b30fc4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bivariate analysis</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data Structures and Information Theory</topic><topic>Information Storage and Retrieval</topic><topic>Machine learning</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Permutations</topic><topic>Ranking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nardini, Franco Maria</creatorcontrib><creatorcontrib>Trani, Roberto</creatorcontrib><creatorcontrib>Venturini, Rossano</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discover Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nardini, Franco Maria</au><au>Trani, Roberto</au><au>Venturini, Rossano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning bivariate scoring functions for ranking</atitle><jtitle>Discover Computing</jtitle><stitle>Discov Computing</stitle><date>2024-09-27</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>33</spage><pages>33-</pages><artnum>33</artnum><issn>2948-2992</issn><issn>1386-4564</issn><eissn>2948-2992</eissn><eissn>1573-7659</eissn><abstract>State-of-the-art Learning-to-Rank algorithms, e.g., λ MART , rely on univariate scoring functions to score a list of items. Univariate scoring functions score each item independently, i.e., without considering the other available items in the list. Nevertheless, ranking deals with producing an effective ordering of the items and comparisons between items are helpful to achieve this task. Bivariate scoring functions allow the model to exploit dependencies between the items in the list as they work by scoring pairs of items. In this paper, we exploit item dependencies in a novel framework—we call it the Lambda Bivariate ( LB ) framework—that allows to learn effective bivariate scoring functions for ranking using gradient boosting trees. We discuss the three main ingredients of LB : ( i ) the invariance to permutations property, ( ii ) the function aggregating the scores of all pairs into the per-item scores, and ( iii ) the optimization process to learn bivariate scoring functions for ranking using any differentiable loss functions. We apply LB to the λ Rank loss and we show that it results in learning a bivariate version of λ MART —we call it Bi- λ MART —that significantly outperforms all neural-network-based and tree-based state-of-the-art algorithms for Learning-to-Rank. To show the generality of LB with respect to other loss functions, we also discuss its application to the Softmax loss.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10791-024-09444-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-2992
ispartof Discover Computing, 2024-09, Vol.27 (1), p.33, Article 33
issn 2948-2992
1386-4564
2948-2992
1573-7659
language eng
recordid cdi_proquest_journals_3110560825
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Algorithms
Bivariate analysis
Computer Science
Data Mining and Knowledge Discovery
Data Structures and Information Theory
Information Storage and Retrieval
Machine learning
Natural Language Processing (NLP)
Neural networks
Pattern Recognition
Permutations
Ranking
title Learning bivariate scoring functions for ranking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20bivariate%20scoring%20functions%20for%20ranking&rft.jtitle=Discover%20Computing&rft.au=Nardini,%20Franco%20Maria&rft.date=2024-09-27&rft.volume=27&rft.issue=1&rft.spage=33&rft.pages=33-&rft.artnum=33&rft.issn=2948-2992&rft.eissn=2948-2992&rft_id=info:doi/10.1007/s10791-024-09444-7&rft_dat=%3Cproquest_cross%3E3110560825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110560825&rft_id=info:pmid/&rfr_iscdi=true