Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN

This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2024-09, Vol.17 (9), p.380
Hauptverfasser: Gadhi, Adel Hassan A., Peiris, Shelton, Allen, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 380
container_title Journal of risk and financial management
container_volume 17
creator Gadhi, Adel Hassan A.
Peiris, Shelton
Allen, David E.
description This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.
doi_str_mv 10.3390/jrfm17090380
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110556368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810690749</galeid><sourcerecordid>A810690749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1420-a30b37751f1aa612af513e8cbc33b8b43b15d65469ea1f18910e854b82a467763</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpjg-wxJYUT504Druo0IdUYMFzFzmJ07hK4mI7oPw9rsqimsWMru6Z0VyEroFMKU3I3c5ULcQkIZSTMzSCBCDgJA7PT-ZLNLF2RwgB4hnKR-hr3e6N_lHdFn_oRjjVKDfghTayENZ5-R6n-NX15YBdbXS_rfFqyI0q8YOUe7yRwnQH-Em6WpcW_ypX489l-nyFLirRWDn572P0vnh8m6-CzctyPU83QQHhjASCkpzGcQQVCMFgJqoIqORFXlCa8zykOUQli0KWSOE9PAEieRTmfCZCFseMjtHNca9_47uX1mU73ZvOn8woAIkiRhn3runRtRWNzFRXaWdE4auUrSp0Jyvl9ZQDYYnPKfHA7REojLbWyCrbG9UKM2RAskPe2Wne9A-XIHEx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110556368</pqid></control><display><type>article</type><title>Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gadhi, Adel Hassan A. ; Peiris, Shelton ; Allen, David E.</creator><creatorcontrib>Gadhi, Adel Hassan A. ; Peiris, Shelton ; Allen, David E.</creatorcontrib><description>This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm17090380</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Analysis ; Decision trees ; Deep learning ; Econometric models ; Economic forecasting ; Forecasting ; Global economy ; Machine learning ; Mean square errors ; Methods ; Neural networks ; Securities markets ; Stochastic models ; Time series ; Volatility</subject><ispartof>Journal of risk and financial management, 2024-09, Vol.17 (9), p.380</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1420-a30b37751f1aa612af513e8cbc33b8b43b15d65469ea1f18910e854b82a467763</cites><orcidid>0000-0001-7782-0865 ; 0000-0002-2612-0831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gadhi, Adel Hassan A.</creatorcontrib><creatorcontrib>Peiris, Shelton</creatorcontrib><creatorcontrib>Allen, David E.</creatorcontrib><title>Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN</title><title>Journal of risk and financial management</title><description>This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Econometric models</subject><subject>Economic forecasting</subject><subject>Forecasting</subject><subject>Global economy</subject><subject>Machine learning</subject><subject>Mean square errors</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Securities markets</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Volatility</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkMtOwzAQRS0EElXpjg-wxJYUT504Druo0IdUYMFzFzmJ07hK4mI7oPw9rsqimsWMru6Z0VyEroFMKU3I3c5ULcQkIZSTMzSCBCDgJA7PT-ZLNLF2RwgB4hnKR-hr3e6N_lHdFn_oRjjVKDfghTayENZ5-R6n-NX15YBdbXS_rfFqyI0q8YOUe7yRwnQH-Em6WpcW_ypX489l-nyFLirRWDn572P0vnh8m6-CzctyPU83QQHhjASCkpzGcQQVCMFgJqoIqORFXlCa8zykOUQli0KWSOE9PAEieRTmfCZCFseMjtHNca9_47uX1mU73ZvOn8woAIkiRhn3runRtRWNzFRXaWdE4auUrSp0Jyvl9ZQDYYnPKfHA7REojLbWyCrbG9UKM2RAskPe2Wne9A-XIHEx</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Gadhi, Adel Hassan A.</creator><creator>Peiris, Shelton</creator><creator>Allen, David E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7782-0865</orcidid><orcidid>https://orcid.org/0000-0002-2612-0831</orcidid></search><sort><creationdate>20240901</creationdate><title>Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN</title><author>Gadhi, Adel Hassan A. ; Peiris, Shelton ; Allen, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1420-a30b37751f1aa612af513e8cbc33b8b43b15d65469ea1f18910e854b82a467763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Econometric models</topic><topic>Economic forecasting</topic><topic>Forecasting</topic><topic>Global economy</topic><topic>Machine learning</topic><topic>Mean square errors</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Securities markets</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadhi, Adel Hassan A.</creatorcontrib><creatorcontrib>Peiris, Shelton</creatorcontrib><creatorcontrib>Allen, David E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadhi, Adel Hassan A.</au><au>Peiris, Shelton</au><au>Allen, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN</atitle><jtitle>Journal of risk and financial management</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>17</volume><issue>9</issue><spage>380</spage><pages>380-</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jrfm17090380</doi><orcidid>https://orcid.org/0000-0001-7782-0865</orcidid><orcidid>https://orcid.org/0000-0002-2612-0831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1911-8074
ispartof Journal of risk and financial management, 2024-09, Vol.17 (9), p.380
issn 1911-8074
1911-8066
1911-8074
language eng
recordid cdi_proquest_journals_3110556368
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Analysis
Decision trees
Deep learning
Econometric models
Economic forecasting
Forecasting
Global economy
Machine learning
Mean square errors
Methods
Neural networks
Securities markets
Stochastic models
Time series
Volatility
title Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Volatility%20Forecasting:%20A%20Study%20through%20Hybrid%20Deep%20Learning%20Methods%20with%20WGAN&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Gadhi,%20Adel%20Hassan%20A.&rft.date=2024-09-01&rft.volume=17&rft.issue=9&rft.spage=380&rft.pages=380-&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm17090380&rft_dat=%3Cgale_proqu%3EA810690749%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110556368&rft_id=info:pmid/&rft_galeid=A810690749&rfr_iscdi=true