Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN

This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2024-09, Vol.17 (9), p.380
Hauptverfasser: Gadhi, Adel Hassan A., Peiris, Shelton, Allen, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.
ISSN:1911-8074
1911-8066
1911-8074
DOI:10.3390/jrfm17090380