Deep learning for prediction of cardiomegaly using chest X-rays
In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) mea...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-11, Vol.36 (31), p.19383-19391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19391 |
---|---|
container_issue | 31 |
container_start_page | 19383 |
container_title | Neural computing & applications |
container_volume | 36 |
creator | Gupta, Mrigakshi Singh, Akash Kumar, Yatender |
description | In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes. |
doi_str_mv | 10.1007/s00521-024-10190-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110546597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110546597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOclKpD6h4EbBXUgzSZ3STsakXfTfmzqCO1dncb9zLnwIXVK4pgDNTQGQjBJgglCgBog6QhMqOCccpD5GEzCinpXgp-islBUACKXlBN3ehzDgdXC57_oljinjIYe289su9ThF7F1uu7QJS7fe4105QP4zlC3-INntyzk6iW5dwsVvTtH748Pb7JnMX59eZndz4imVikRBF1wK6RSLinsVtOAL7QxjXKt20TY8qiCV8owGpY1pXMtojWBYo2Mj-BRdjbtDTl-7-t-u0i739aXllIIUSpqmUmykfE6l5BDtkLuNy3tLwR5E2VGUraLsjyiraomPpVLhfhny3_Q_rW9CMmk3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110546597</pqid></control><display><type>article</type><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</creator><creatorcontrib>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</creatorcontrib><description>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-024-10190-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Chest ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computed tomography ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Diagnosis ; Heart diseases ; Image Processing and Computer Vision ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science ; X-rays</subject><ispartof>Neural computing & applications, 2024-11, Vol.36 (31), p.19383-19391</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</cites><orcidid>0000-0002-9835-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-024-10190-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-024-10190-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gupta, Mrigakshi</creatorcontrib><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Kumar, Yatender</creatorcontrib><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Chest</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Heart diseases</subject><subject>Image Processing and Computer Vision</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>X-rays</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmOclKpD6h4EbBXUgzSZ3STsakXfTfmzqCO1dncb9zLnwIXVK4pgDNTQGQjBJgglCgBog6QhMqOCccpD5GEzCinpXgp-islBUACKXlBN3ehzDgdXC57_oljinjIYe289su9ThF7F1uu7QJS7fe4105QP4zlC3-INntyzk6iW5dwsVvTtH748Pb7JnMX59eZndz4imVikRBF1wK6RSLinsVtOAL7QxjXKt20TY8qiCV8owGpY1pXMtojWBYo2Mj-BRdjbtDTl-7-t-u0i739aXllIIUSpqmUmykfE6l5BDtkLuNy3tLwR5E2VGUraLsjyiraomPpVLhfhny3_Q_rW9CMmk3</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Gupta, Mrigakshi</creator><creator>Singh, Akash</creator><creator>Kumar, Yatender</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9835-9892</orcidid></search><sort><creationdate>20241101</creationdate><title>Deep learning for prediction of cardiomegaly using chest X-rays</title><author>Gupta, Mrigakshi ; Singh, Akash ; Kumar, Yatender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1156-f41b3545a62f63c6e843b8a922386dbd73f6e566c21e68997ad21997e9278f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Chest</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Heart diseases</topic><topic>Image Processing and Computer Vision</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Mrigakshi</creatorcontrib><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Kumar, Yatender</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Mrigakshi</au><au>Singh, Akash</au><au>Kumar, Yatender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for prediction of cardiomegaly using chest X-rays</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>19383</spage><epage>19391</epage><pages>19383-19391</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In the past decade, deep learning in biomedical imaging has exponentially increased the accuracy of disease detection and improved the health standards. This research paper introduces a novel approach for the early detection and diagnosis of cardiomegaly using the cardiothoracic ratio (CT ratio) measurement in chest X-ray scans. Cardiomegaly is a serious cardiac condition that can lead to life-threatening complications if left undiagnosed. The proposed method involves segmenting the heart from a chest CT scan using a convolutional neural network model, ResNet-18, and calculating the CT ratio, which is the ratio of the maximum width of the heart to the maximum width of the thoracic cage. Studies have shown that increasing CT ratio leads to an increasing risk of heart diseases. Hence, a need to monitor the CT ratio for every individual arises, for if the ratio changes, an alert to take precautions can be rang. The method is evaluated using a dataset of 490 chest X-ray scans, and it achieves an accuracy of 80% and a precision of 84%. The integration of CT ratio measurement in chest X-ray scan reports has the potential to aid in the early detection and diagnosis of cardiomegaly, allowing for prompt medical intervention and improving patient outcomes.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-024-10190-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9835-9892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2024-11, Vol.36 (31), p.19383-19391 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_3110546597 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Chest Computational Biology/Bioinformatics Computational Science and Engineering Computed tomography Computer Science Data Mining and Knowledge Discovery Deep learning Diagnosis Heart diseases Image Processing and Computer Vision Medical imaging Original Article Probability and Statistics in Computer Science X-rays |
title | Deep learning for prediction of cardiomegaly using chest X-rays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20prediction%20of%20cardiomegaly%20using%20chest%20X-rays&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Gupta,%20Mrigakshi&rft.date=2024-11-01&rft.volume=36&rft.issue=31&rft.spage=19383&rft.epage=19391&rft.pages=19383-19391&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-024-10190-6&rft_dat=%3Cproquest_cross%3E3110546597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110546597&rft_id=info:pmid/&rfr_iscdi=true |