A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge

Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-09, Vol.95 (9)
Hauptverfasser: Liu, Tianxu, Cheng, Runze, Wang, Ruodan, Zhao, Zheng, Wang, Yanan, Sun, Anbang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Review of scientific instruments
container_volume 95
creator Liu, Tianxu
Cheng, Runze
Wang, Ruodan
Zhao, Zheng
Wang, Yanan
Sun, Anbang
description Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.
doi_str_mv 10.1063/5.0225316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110495490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110405531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19AAl5U6Hzy2vY4hm8w8KIXLyVN062jbyapsG9vRqcHD-YSAr_8eZ4_QpcE5gQkuxdzoFQwIo_QlECSRrGk7BhNARiPZMyTCTpzbgvhCEJO0YSljKYC4in6WGBreuMrX30Z3A-1MwU2tdHedn5jbKNq3NfKNQpvjcfVug2ya7HbOW8anKu9D2-t-qquld3honJ6o-zanKOTUoW8i8M9Q--PD2_L52j1-vSyXKwiTVnioxwKpkrFlJYp4UJyrgFSpQkViZI85pwSSRgTuUggfElFQTkpdcIVE1AmbIZuxtzedp-DcT5rwggmTNOabnAZIwQ4iNBPoNd_6LYbbBumG1UqeApB3Y5K2845a8qst1UTdssIZPvCM5EdCg_26pA45I0pfuVPwwHcjcDpyqt9d_-kfQPMs4ZX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110495490</pqid></control><display><type>article</type><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><source>AIP Journals Complete</source><creator>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</creator><creatorcontrib>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</creatorcontrib><description>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0225316</identifier><identifier>PMID: 39329507</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Ablation ; Atmospheric pressure ; Capacitors ; Capillary pressure ; Control systems ; Delay ; Deposition ; Efficiency ; Electric potential ; Energy storage ; Heat flux ; Ignition systems ; Plasma jets ; Process parameters ; Topology ; Voltage</subject><ispartof>Review of scientific instruments, 2024-09, Vol.95 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</cites><orcidid>0000-0003-1918-3110 ; 0000-0002-9126-7602 ; 0009-0008-4511-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0225316$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4499,27906,27907,76134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39329507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tianxu</creatorcontrib><creatorcontrib>Cheng, Runze</creatorcontrib><creatorcontrib>Wang, Ruodan</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Sun, Anbang</creatorcontrib><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</description><subject>Ablation</subject><subject>Atmospheric pressure</subject><subject>Capacitors</subject><subject>Capillary pressure</subject><subject>Control systems</subject><subject>Delay</subject><subject>Deposition</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>Heat flux</subject><subject>Ignition systems</subject><subject>Plasma jets</subject><subject>Process parameters</subject><subject>Topology</subject><subject>Voltage</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19AAl5U6Hzy2vY4hm8w8KIXLyVN062jbyapsG9vRqcHD-YSAr_8eZ4_QpcE5gQkuxdzoFQwIo_QlECSRrGk7BhNARiPZMyTCTpzbgvhCEJO0YSljKYC4in6WGBreuMrX30Z3A-1MwU2tdHedn5jbKNq3NfKNQpvjcfVug2ya7HbOW8anKu9D2-t-qquld3honJ6o-zanKOTUoW8i8M9Q--PD2_L52j1-vSyXKwiTVnioxwKpkrFlJYp4UJyrgFSpQkViZI85pwSSRgTuUggfElFQTkpdcIVE1AmbIZuxtzedp-DcT5rwggmTNOabnAZIwQ4iNBPoNd_6LYbbBumG1UqeApB3Y5K2845a8qst1UTdssIZPvCM5EdCg_26pA45I0pfuVPwwHcjcDpyqt9d_-kfQPMs4ZX</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Tianxu</creator><creator>Cheng, Runze</creator><creator>Wang, Ruodan</creator><creator>Zhao, Zheng</creator><creator>Wang, Yanan</creator><creator>Sun, Anbang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1918-3110</orcidid><orcidid>https://orcid.org/0000-0002-9126-7602</orcidid><orcidid>https://orcid.org/0009-0008-4511-9239</orcidid></search><sort><creationdate>20240901</creationdate><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><author>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Atmospheric pressure</topic><topic>Capacitors</topic><topic>Capillary pressure</topic><topic>Control systems</topic><topic>Delay</topic><topic>Deposition</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>Heat flux</topic><topic>Ignition systems</topic><topic>Plasma jets</topic><topic>Process parameters</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianxu</creatorcontrib><creatorcontrib>Cheng, Runze</creatorcontrib><creatorcontrib>Wang, Ruodan</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Sun, Anbang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianxu</au><au>Cheng, Runze</au><au>Wang, Ruodan</au><au>Zhao, Zheng</au><au>Wang, Yanan</au><au>Sun, Anbang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>95</volume><issue>9</issue><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39329507</pmid><doi>10.1063/5.0225316</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1918-3110</orcidid><orcidid>https://orcid.org/0000-0002-9126-7602</orcidid><orcidid>https://orcid.org/0009-0008-4511-9239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2024-09, Vol.95 (9)
issn 0034-6748
1089-7623
1089-7623
language eng
recordid cdi_proquest_journals_3110495490
source AIP Journals Complete
subjects Ablation
Atmospheric pressure
Capacitors
Capillary pressure
Control systems
Delay
Deposition
Efficiency
Electric potential
Energy storage
Heat flux
Ignition systems
Plasma jets
Process parameters
Topology
Voltage
title A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20repetitive%20pulsed%20electrothermal%20plasma%20jet%20ignition%20system%20based%20on%20capillary%20discharge&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20Tianxu&rft.date=2024-09-01&rft.volume=95&rft.issue=9&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0225316&rft_dat=%3Cproquest_cross%3E3110405531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110495490&rft_id=info:pmid/39329507&rfr_iscdi=true