A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge
Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this pape...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2024-09, Vol.95 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 95 |
creator | Liu, Tianxu Cheng, Runze Wang, Ruodan Zhao, Zheng Wang, Yanan Sun, Anbang |
description | Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system. |
doi_str_mv | 10.1063/5.0225316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110495490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110405531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19AAl5U6Hzy2vY4hm8w8KIXLyVN062jbyapsG9vRqcHD-YSAr_8eZ4_QpcE5gQkuxdzoFQwIo_QlECSRrGk7BhNARiPZMyTCTpzbgvhCEJO0YSljKYC4in6WGBreuMrX30Z3A-1MwU2tdHedn5jbKNq3NfKNQpvjcfVug2ya7HbOW8anKu9D2-t-qquld3honJ6o-zanKOTUoW8i8M9Q--PD2_L52j1-vSyXKwiTVnioxwKpkrFlJYp4UJyrgFSpQkViZI85pwSSRgTuUggfElFQTkpdcIVE1AmbIZuxtzedp-DcT5rwggmTNOabnAZIwQ4iNBPoNd_6LYbbBumG1UqeApB3Y5K2845a8qst1UTdssIZPvCM5EdCg_26pA45I0pfuVPwwHcjcDpyqt9d_-kfQPMs4ZX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110495490</pqid></control><display><type>article</type><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><source>AIP Journals Complete</source><creator>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</creator><creatorcontrib>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</creatorcontrib><description>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0225316</identifier><identifier>PMID: 39329507</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Ablation ; Atmospheric pressure ; Capacitors ; Capillary pressure ; Control systems ; Delay ; Deposition ; Efficiency ; Electric potential ; Energy storage ; Heat flux ; Ignition systems ; Plasma jets ; Process parameters ; Topology ; Voltage</subject><ispartof>Review of scientific instruments, 2024-09, Vol.95 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</cites><orcidid>0000-0003-1918-3110 ; 0000-0002-9126-7602 ; 0009-0008-4511-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0225316$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4499,27906,27907,76134</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39329507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tianxu</creatorcontrib><creatorcontrib>Cheng, Runze</creatorcontrib><creatorcontrib>Wang, Ruodan</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Sun, Anbang</creatorcontrib><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</description><subject>Ablation</subject><subject>Atmospheric pressure</subject><subject>Capacitors</subject><subject>Capillary pressure</subject><subject>Control systems</subject><subject>Delay</subject><subject>Deposition</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>Heat flux</subject><subject>Ignition systems</subject><subject>Plasma jets</subject><subject>Process parameters</subject><subject>Topology</subject><subject>Voltage</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19AAl5U6Hzy2vY4hm8w8KIXLyVN062jbyapsG9vRqcHD-YSAr_8eZ4_QpcE5gQkuxdzoFQwIo_QlECSRrGk7BhNARiPZMyTCTpzbgvhCEJO0YSljKYC4in6WGBreuMrX30Z3A-1MwU2tdHedn5jbKNq3NfKNQpvjcfVug2ya7HbOW8anKu9D2-t-qquld3honJ6o-zanKOTUoW8i8M9Q--PD2_L52j1-vSyXKwiTVnioxwKpkrFlJYp4UJyrgFSpQkViZI85pwSSRgTuUggfElFQTkpdcIVE1AmbIZuxtzedp-DcT5rwggmTNOabnAZIwQ4iNBPoNd_6LYbbBumG1UqeApB3Y5K2845a8qst1UTdssIZPvCM5EdCg_26pA45I0pfuVPwwHcjcDpyqt9d_-kfQPMs4ZX</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Liu, Tianxu</creator><creator>Cheng, Runze</creator><creator>Wang, Ruodan</creator><creator>Zhao, Zheng</creator><creator>Wang, Yanan</creator><creator>Sun, Anbang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1918-3110</orcidid><orcidid>https://orcid.org/0000-0002-9126-7602</orcidid><orcidid>https://orcid.org/0009-0008-4511-9239</orcidid></search><sort><creationdate>20240901</creationdate><title>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</title><author>Liu, Tianxu ; Cheng, Runze ; Wang, Ruodan ; Zhao, Zheng ; Wang, Yanan ; Sun, Anbang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-b0d3afa3ac69145644c009ac1258a647442161335b580c2395d241fc84a350f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Atmospheric pressure</topic><topic>Capacitors</topic><topic>Capillary pressure</topic><topic>Control systems</topic><topic>Delay</topic><topic>Deposition</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>Heat flux</topic><topic>Ignition systems</topic><topic>Plasma jets</topic><topic>Process parameters</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianxu</creatorcontrib><creatorcontrib>Cheng, Runze</creatorcontrib><creatorcontrib>Wang, Ruodan</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Sun, Anbang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianxu</au><au>Cheng, Runze</au><au>Wang, Ruodan</au><au>Zhao, Zheng</au><au>Wang, Yanan</au><au>Sun, Anbang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>95</volume><issue>9</issue><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Plasma ignition and combustion enhancement is a promising technology in applications of engines, industrial burners, pollutant emissions controls, etc. A new repetitive electrothermal plasma jet ignition system based on ablated capillary discharge under atmospheric pressure is presented in this paper. It consists of a capillary discharge module, a pulse current circuit, a pulse voltage circuit, a current release unit, an LC series resonant circuit, and a control system. The effects of the energy storage capacitor’s voltage and resistance in the current release unit on the electrical parameters are investigated. Increasing the capacitor voltage helps to shorten the discharge delay and increase the energy deposition efficiency in the main discharge process. The increase of the resistance in the current release unit leads to a longer discharge delay and higher energy deposition efficiency in the main discharge process. Balanced parameters between the delay of discharge in 66 µs and the energy deposition efficiency in 84% are achieved through optimization, with a peak radiative heat flux of 23 MW m−2 and a maximum jet length of 17 cm. Repetitive capillary discharge at 20 Hz under atmospheric pressure is achieved with the dispersion of energy storage capacitor charging voltage and energy deposition efficiency of 0.3% and 9.6%, respectively. Simplified circuit topology and control logic contribute to the miniaturization of the ignition system.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39329507</pmid><doi>10.1063/5.0225316</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1918-3110</orcidid><orcidid>https://orcid.org/0000-0002-9126-7602</orcidid><orcidid>https://orcid.org/0009-0008-4511-9239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2024-09, Vol.95 (9) |
issn | 0034-6748 1089-7623 1089-7623 |
language | eng |
recordid | cdi_proquest_journals_3110495490 |
source | AIP Journals Complete |
subjects | Ablation Atmospheric pressure Capacitors Capillary pressure Control systems Delay Deposition Efficiency Electric potential Energy storage Heat flux Ignition systems Plasma jets Process parameters Topology Voltage |
title | A repetitive pulsed electrothermal plasma jet ignition system based on capillary discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20repetitive%20pulsed%20electrothermal%20plasma%20jet%20ignition%20system%20based%20on%20capillary%20discharge&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20Tianxu&rft.date=2024-09-01&rft.volume=95&rft.issue=9&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0225316&rft_dat=%3Cproquest_cross%3E3110405531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110495490&rft_id=info:pmid/39329507&rfr_iscdi=true |