Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images

Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-09, Vol.13 (18), p.3665
Hauptverfasser: Zhang, Xizhe, Zhang, Qi, Li, Peixian, You, Jie, Sun, Jingzhang, Zhou, Jianhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 3665
container_title Electronics (Basel)
container_volume 13
creator Zhang, Xizhe
Zhang, Qi
Li, Peixian
You, Jie
Sun, Jingzhang
Zhou, Jianhang
description Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is useful and valuable. Here, an intelligent classification method for burn depth based on machine learning techniques is proposed. In particular, this method involves extracting color, texture, and depth features from images, and sequentially cascading these features. Then, an iterative selection method based on random forest feature importance measure is applied. The selected features are input into the random forest classifier to evaluate this proposed method using the standard burn dataset. This method classifies burn images, achieving an accuracy of 91.76% when classified into two categories and 80.74% when classified into three categories. The comprehensive experimental results indicate that this proposed method is capable of learning effective features from limited data samples and identifying burn depth effectively.
doi_str_mv 10.3390/electronics13183665
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110458730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810659534</galeid><sourcerecordid>A810659534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-e23ade55376b135faab3ef4ad527a623bbca516ff641cce4838641af12a443893</originalsourceid><addsrcrecordid>eNptUU1PwzAMrRBITGO_gEslzh1J3LTNcewDJg1xgJ2rNHW2TG0zkkyCf0_HkABp9sHvWc9fchTdUjIGEOQeG1TB2c4oT4EWkGX8IhowkotEMMEu_-DraOT9jvQmKBRABtH6-dAEkyxQhoPDeP4RnFTB2C6WXR2_fvc-smcMW1vHwcYzIzed9Rg_HFwXz3AftrF2tj3xZSs36G-iKy0bj6OfOIzWi_nb9ClZvTwup5NVolgmQoIMZI2cQ55VFLiWsgLUqaw5y2XGoKqU5DTTOkupUpgWUPRIaspkmkIhYBjdnfrunX0_oA_lzvZb9CNLoJSkvMiB_Ko2ssHSdNoej2yNV-WkoCTjgkPaq8ZnVL3X2BplO9Smz_8rgFOBctZ7h7rcO9NK91lSUh4_U575DHwBzz2Cng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110458730</pqid></control><display><type>article</type><title>Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhang, Xizhe ; Zhang, Qi ; Li, Peixian ; You, Jie ; Sun, Jingzhang ; Zhou, Jianhang</creator><creatorcontrib>Zhang, Xizhe ; Zhang, Qi ; Li, Peixian ; You, Jie ; Sun, Jingzhang ; Zhou, Jianhang</creatorcontrib><description>Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is useful and valuable. Here, an intelligent classification method for burn depth based on machine learning techniques is proposed. In particular, this method involves extracting color, texture, and depth features from images, and sequentially cascading these features. Then, an iterative selection method based on random forest feature importance measure is applied. The selected features are input into the random forest classifier to evaluate this proposed method using the standard burn dataset. This method classifies burn images, achieving an accuracy of 91.76% when classified into two categories and 80.74% when classified into three categories. The comprehensive experimental results indicate that this proposed method is capable of learning effective features from limited data samples and identifying burn depth effectively.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13183665</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Brain cancer ; Burns and scalds ; Classification ; Datasets ; Diagnosis ; Edema ; Evaluation ; Feature extraction ; Feature selection ; Machine learning ; Medical care ; Medical research ; Methods ; Neural networks ; Quality management ; Skin ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2024-09, Vol.13 (18), p.3665</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-e23ade55376b135faab3ef4ad527a623bbca516ff641cce4838641af12a443893</cites><orcidid>0000-0002-6961-6677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xizhe</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Peixian</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Sun, Jingzhang</creatorcontrib><creatorcontrib>Zhou, Jianhang</creatorcontrib><title>Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images</title><title>Electronics (Basel)</title><description>Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is useful and valuable. Here, an intelligent classification method for burn depth based on machine learning techniques is proposed. In particular, this method involves extracting color, texture, and depth features from images, and sequentially cascading these features. Then, an iterative selection method based on random forest feature importance measure is applied. The selected features are input into the random forest classifier to evaluate this proposed method using the standard burn dataset. This method classifies burn images, achieving an accuracy of 91.76% when classified into two categories and 80.74% when classified into three categories. The comprehensive experimental results indicate that this proposed method is capable of learning effective features from limited data samples and identifying burn depth effectively.</description><subject>Accuracy</subject><subject>Brain cancer</subject><subject>Burns and scalds</subject><subject>Classification</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Edema</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Medical care</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Quality management</subject><subject>Skin</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1PwzAMrRBITGO_gEslzh1J3LTNcewDJg1xgJ2rNHW2TG0zkkyCf0_HkABp9sHvWc9fchTdUjIGEOQeG1TB2c4oT4EWkGX8IhowkotEMMEu_-DraOT9jvQmKBRABtH6-dAEkyxQhoPDeP4RnFTB2C6WXR2_fvc-smcMW1vHwcYzIzed9Rg_HFwXz3AftrF2tj3xZSs36G-iKy0bj6OfOIzWi_nb9ClZvTwup5NVolgmQoIMZI2cQ55VFLiWsgLUqaw5y2XGoKqU5DTTOkupUpgWUPRIaspkmkIhYBjdnfrunX0_oA_lzvZb9CNLoJSkvMiB_Ko2ssHSdNoej2yNV-WkoCTjgkPaq8ZnVL3X2BplO9Smz_8rgFOBctZ7h7rcO9NK91lSUh4_U575DHwBzz2Cng</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Xizhe</creator><creator>Zhang, Qi</creator><creator>Li, Peixian</creator><creator>You, Jie</creator><creator>Sun, Jingzhang</creator><creator>Zhou, Jianhang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6961-6677</orcidid></search><sort><creationdate>20240901</creationdate><title>Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images</title><author>Zhang, Xizhe ; Zhang, Qi ; Li, Peixian ; You, Jie ; Sun, Jingzhang ; Zhou, Jianhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-e23ade55376b135faab3ef4ad527a623bbca516ff641cce4838641af12a443893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Brain cancer</topic><topic>Burns and scalds</topic><topic>Classification</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Edema</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Medical care</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Quality management</topic><topic>Skin</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xizhe</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Li, Peixian</creatorcontrib><creatorcontrib>You, Jie</creatorcontrib><creatorcontrib>Sun, Jingzhang</creatorcontrib><creatorcontrib>Zhou, Jianhang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xizhe</au><au>Zhang, Qi</au><au>Li, Peixian</au><au>You, Jie</au><au>Sun, Jingzhang</au><au>Zhou, Jianhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>13</volume><issue>18</issue><spage>3665</spage><pages>3665-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Burn wound depth is a significant determinant of patient treatment. Typically, the evaluation of burn depth relies heavily on the clinical experience of doctors. Even experienced surgeons may not achieve high accuracy and speed in diagnosing burn depth. Thus, intelligent burn depth classification is useful and valuable. Here, an intelligent classification method for burn depth based on machine learning techniques is proposed. In particular, this method involves extracting color, texture, and depth features from images, and sequentially cascading these features. Then, an iterative selection method based on random forest feature importance measure is applied. The selected features are input into the random forest classifier to evaluate this proposed method using the standard burn dataset. This method classifies burn images, achieving an accuracy of 91.76% when classified into two categories and 80.74% when classified into three categories. The comprehensive experimental results indicate that this proposed method is capable of learning effective features from limited data samples and identifying burn depth effectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13183665</doi><orcidid>https://orcid.org/0000-0002-6961-6677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-09, Vol.13 (18), p.3665
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3110458730
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Brain cancer
Burns and scalds
Classification
Datasets
Diagnosis
Edema
Evaluation
Feature extraction
Feature selection
Machine learning
Medical care
Medical research
Methods
Neural networks
Quality management
Skin
Wavelet transforms
title Multi-Feature Extraction and Selection Method to Diagnose Burn Depth from Burn Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Feature%20Extraction%20and%20Selection%20Method%20to%20Diagnose%20Burn%20Depth%20from%20Burn%20Images&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20Xizhe&rft.date=2024-09-01&rft.volume=13&rft.issue=18&rft.spage=3665&rft.pages=3665-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13183665&rft_dat=%3Cgale_proqu%3EA810659534%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110458730&rft_id=info:pmid/&rft_galeid=A810659534&rfr_iscdi=true