Evaluation of Haptic Textures for Tangible Interfaces for the Tactile Internet
Every texture in the real world provides us with the essential information to identify the physical characteristics of real objects. In addition to sight, humans use the sense of touch to explore their environment. Through haptic interaction we obtain unique and distinct information about the textur...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-09, Vol.13 (18), p.3775 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Every texture in the real world provides us with the essential information to identify the physical characteristics of real objects. In addition to sight, humans use the sense of touch to explore their environment. Through haptic interaction we obtain unique and distinct information about the texture and the shape of objects. In this paper, we enhance X3D 3D graphics files with haptic features to create 3D objects with haptic feedback. We propose haptic attributes such as static and dynamic friction, stiffness, and maximum altitude that provide the optimal user experience in a virtual haptic environment. After numerous optimization attempts on the haptic textures, we propose various haptic geometrical textures for creating a virtual 3D haptic environment for the tactile Internet. These tangible geometrical textures can be attached to any geometric shape, enhancing the haptic sense. We conducted a study of user interaction with a virtual environment consisting of 3D objects enhanced with haptic textures to evaluate performance and user experience. The goal is to evaluate the realism and recognition accuracy of each generated texture. The findings of the study aid visually impaired individuals to better understand their physical environment, using haptic devices in conjunction with the enhanced haptic textures. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13183775 |