A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020
Climate change intensifies the frequency and severity of extreme weather events, profoundly altering demographic landscapes globally and within the United States. This study investigates their impact on migration patterns, using propensity score matching and LASSO techniques within a larger regressi...
Gespeichert in:
Veröffentlicht in: | Climate (Basel) 2024-09, Vol.12 (9), p.140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 140 |
container_title | Climate (Basel) |
container_volume | 12 |
creator | Hirsch, Zachary M. Porter, Jeremy R. Buresch, Jasmina M. Medgyesi, Danielle N. Shu, Evelyn G. Hauer, Matthew E. |
description | Climate change intensifies the frequency and severity of extreme weather events, profoundly altering demographic landscapes globally and within the United States. This study investigates their impact on migration patterns, using propensity score matching and LASSO techniques within a larger regression modeling framework. Here, we analyze historical population trends in relation to climate risk and exposure metrics for various hazards. Our findings reveal nuanced patterns of climate-induced population change, including “risky growth” areas where economic opportunities mitigate climate risks, sustaining growth in the face of observed exposure; “tipping point” areas where the amenities are slowly giving way to the disamenity of escalating hazards; and “Climate abandonment” areas experiencing exacerbated out-migration from climate risks, compounded by other out-migration market factors. Even within a single county, these patterns vary significantly, underscoring the importance of localized analyses. Projecting population impacts due to climate risk to 2055, flood risks are projected to impact the largest percentage of areas (82.6%), followed by heatwaves (47.4%), drought (46.6%), wildfires (32.7%), wildfire smoke (21.7%), and tropical cyclone winds (11.1%). The results underscore the importance of understanding hyperlocal patterns of risk and change in order to better forecast future patterns. |
doi_str_mv | 10.3390/cli12090140 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3110431155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810690033</galeid><sourcerecordid>A810690033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-def72a085114b6dda3815c1bad83584cc37aa9e67470979e52ab12a6ae3a9a453</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIVKUnfsASR5riJSu3KCyt1AoO5RxNHCd1lcbBdg_lT_hbHIJQbckzmnlvxm_G824JXjCW4gfeSkJxikmAL7wJpTT0CQmDyzP_2psZs8fupIQlJJl43xnaHFsr_SV8ga5Q1vdaAd8hq1DeygNYgTay0WCl6h7RVhgruwbZnUCrzgptBB8ySNX_8LGSmaN31R_bXyLKd9A1Yo6gq9Ba8TH4JIzUUMpW2hOqtTog6n42dKaY4hvvqobWiNmfnXofL8_bfOmv315Xebb2uVNl_UrUMQWchIQEZVRV4HSFnJRQJSxMAs5ZDJCKKA5inMapCCmUhEIEgkEKQcim3t1Y1wn_PDp9xV4ddedaFowQHLgnHFCLEdVAKwrZ1cpq4O5W4iC56kQtXTxLCI5SjBlzhPuRwLUyRou66LWbjz4VBBfDvoqzfbEfHAiG3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110431155</pqid></control><display><type>article</type><title>A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Hirsch, Zachary M. ; Porter, Jeremy R. ; Buresch, Jasmina M. ; Medgyesi, Danielle N. ; Shu, Evelyn G. ; Hauer, Matthew E.</creator><creatorcontrib>Hirsch, Zachary M. ; Porter, Jeremy R. ; Buresch, Jasmina M. ; Medgyesi, Danielle N. ; Shu, Evelyn G. ; Hauer, Matthew E.</creatorcontrib><description>Climate change intensifies the frequency and severity of extreme weather events, profoundly altering demographic landscapes globally and within the United States. This study investigates their impact on migration patterns, using propensity score matching and LASSO techniques within a larger regression modeling framework. Here, we analyze historical population trends in relation to climate risk and exposure metrics for various hazards. Our findings reveal nuanced patterns of climate-induced population change, including “risky growth” areas where economic opportunities mitigate climate risks, sustaining growth in the face of observed exposure; “tipping point” areas where the amenities are slowly giving way to the disamenity of escalating hazards; and “Climate abandonment” areas experiencing exacerbated out-migration from climate risks, compounded by other out-migration market factors. Even within a single county, these patterns vary significantly, underscoring the importance of localized analyses. Projecting population impacts due to climate risk to 2055, flood risks are projected to impact the largest percentage of areas (82.6%), followed by heatwaves (47.4%), drought (46.6%), wildfires (32.7%), wildfire smoke (21.7%), and tropical cyclone winds (11.1%). The results underscore the importance of understanding hyperlocal patterns of risk and change in order to better forecast future patterns.</description><identifier>ISSN: 2225-1154</identifier><identifier>EISSN: 2225-1154</identifier><identifier>DOI: 10.3390/cli12090140</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Climate and population ; Climate change ; Climate models ; Climatic changes ; Decision making ; Drought ; Droughts ; Economic opportunities ; Emigration and immigration ; Environmental hazards ; Environmental risk ; Extreme weather ; Flood forecasting ; Flood risk ; Floods ; Hazard mitigation ; Heat ; Heat waves ; Heatwaves ; Hurricanes ; Impact analysis ; Migration ; Population ; Population studies ; Property values ; Trends ; Tropical cyclones ; United Kingdom ; Wildfires ; Winds</subject><ispartof>Climate (Basel), 2024-09, Vol.12 (9), p.140</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-def72a085114b6dda3815c1bad83584cc37aa9e67470979e52ab12a6ae3a9a453</cites><orcidid>0009-0007-5356-5354 ; 0009-0004-2092-3168 ; 0009-0005-0647-9889 ; 0000-0001-8825-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hirsch, Zachary M.</creatorcontrib><creatorcontrib>Porter, Jeremy R.</creatorcontrib><creatorcontrib>Buresch, Jasmina M.</creatorcontrib><creatorcontrib>Medgyesi, Danielle N.</creatorcontrib><creatorcontrib>Shu, Evelyn G.</creatorcontrib><creatorcontrib>Hauer, Matthew E.</creatorcontrib><title>A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020</title><title>Climate (Basel)</title><description>Climate change intensifies the frequency and severity of extreme weather events, profoundly altering demographic landscapes globally and within the United States. This study investigates their impact on migration patterns, using propensity score matching and LASSO techniques within a larger regression modeling framework. Here, we analyze historical population trends in relation to climate risk and exposure metrics for various hazards. Our findings reveal nuanced patterns of climate-induced population change, including “risky growth” areas where economic opportunities mitigate climate risks, sustaining growth in the face of observed exposure; “tipping point” areas where the amenities are slowly giving way to the disamenity of escalating hazards; and “Climate abandonment” areas experiencing exacerbated out-migration from climate risks, compounded by other out-migration market factors. Even within a single county, these patterns vary significantly, underscoring the importance of localized analyses. Projecting population impacts due to climate risk to 2055, flood risks are projected to impact the largest percentage of areas (82.6%), followed by heatwaves (47.4%), drought (46.6%), wildfires (32.7%), wildfire smoke (21.7%), and tropical cyclone winds (11.1%). The results underscore the importance of understanding hyperlocal patterns of risk and change in order to better forecast future patterns.</description><subject>Analysis</subject><subject>Climate and population</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic changes</subject><subject>Decision making</subject><subject>Drought</subject><subject>Droughts</subject><subject>Economic opportunities</subject><subject>Emigration and immigration</subject><subject>Environmental hazards</subject><subject>Environmental risk</subject><subject>Extreme weather</subject><subject>Flood forecasting</subject><subject>Flood risk</subject><subject>Floods</subject><subject>Hazard mitigation</subject><subject>Heat</subject><subject>Heat waves</subject><subject>Heatwaves</subject><subject>Hurricanes</subject><subject>Impact analysis</subject><subject>Migration</subject><subject>Population</subject><subject>Population studies</subject><subject>Property values</subject><subject>Trends</subject><subject>Tropical cyclones</subject><subject>United Kingdom</subject><subject>Wildfires</subject><subject>Winds</subject><issn>2225-1154</issn><issn>2225-1154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUclOwzAQjRBIVKUnfsASR5riJSu3KCyt1AoO5RxNHCd1lcbBdg_lT_hbHIJQbckzmnlvxm_G824JXjCW4gfeSkJxikmAL7wJpTT0CQmDyzP_2psZs8fupIQlJJl43xnaHFsr_SV8ga5Q1vdaAd8hq1DeygNYgTay0WCl6h7RVhgruwbZnUCrzgptBB8ySNX_8LGSmaN31R_bXyLKd9A1Yo6gq9Ba8TH4JIzUUMpW2hOqtTog6n42dKaY4hvvqobWiNmfnXofL8_bfOmv315Xebb2uVNl_UrUMQWchIQEZVRV4HSFnJRQJSxMAs5ZDJCKKA5inMapCCmUhEIEgkEKQcim3t1Y1wn_PDp9xV4ddedaFowQHLgnHFCLEdVAKwrZ1cpq4O5W4iC56kQtXTxLCI5SjBlzhPuRwLUyRou66LWbjz4VBBfDvoqzfbEfHAiG3Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Hirsch, Zachary M.</creator><creator>Porter, Jeremy R.</creator><creator>Buresch, Jasmina M.</creator><creator>Medgyesi, Danielle N.</creator><creator>Shu, Evelyn G.</creator><creator>Hauer, Matthew E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0009-0007-5356-5354</orcidid><orcidid>https://orcid.org/0009-0004-2092-3168</orcidid><orcidid>https://orcid.org/0009-0005-0647-9889</orcidid><orcidid>https://orcid.org/0000-0001-8825-5750</orcidid></search><sort><creationdate>20240901</creationdate><title>A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020</title><author>Hirsch, Zachary M. ; Porter, Jeremy R. ; Buresch, Jasmina M. ; Medgyesi, Danielle N. ; Shu, Evelyn G. ; Hauer, Matthew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-def72a085114b6dda3815c1bad83584cc37aa9e67470979e52ab12a6ae3a9a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Climate and population</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic changes</topic><topic>Decision making</topic><topic>Drought</topic><topic>Droughts</topic><topic>Economic opportunities</topic><topic>Emigration and immigration</topic><topic>Environmental hazards</topic><topic>Environmental risk</topic><topic>Extreme weather</topic><topic>Flood forecasting</topic><topic>Flood risk</topic><topic>Floods</topic><topic>Hazard mitigation</topic><topic>Heat</topic><topic>Heat waves</topic><topic>Heatwaves</topic><topic>Hurricanes</topic><topic>Impact analysis</topic><topic>Migration</topic><topic>Population</topic><topic>Population studies</topic><topic>Property values</topic><topic>Trends</topic><topic>Tropical cyclones</topic><topic>United Kingdom</topic><topic>Wildfires</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, Zachary M.</creatorcontrib><creatorcontrib>Porter, Jeremy R.</creatorcontrib><creatorcontrib>Buresch, Jasmina M.</creatorcontrib><creatorcontrib>Medgyesi, Danielle N.</creatorcontrib><creatorcontrib>Shu, Evelyn G.</creatorcontrib><creatorcontrib>Hauer, Matthew E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Climate (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, Zachary M.</au><au>Porter, Jeremy R.</au><au>Buresch, Jasmina M.</au><au>Medgyesi, Danielle N.</au><au>Shu, Evelyn G.</au><au>Hauer, Matthew E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020</atitle><jtitle>Climate (Basel)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>140</spage><pages>140-</pages><issn>2225-1154</issn><eissn>2225-1154</eissn><abstract>Climate change intensifies the frequency and severity of extreme weather events, profoundly altering demographic landscapes globally and within the United States. This study investigates their impact on migration patterns, using propensity score matching and LASSO techniques within a larger regression modeling framework. Here, we analyze historical population trends in relation to climate risk and exposure metrics for various hazards. Our findings reveal nuanced patterns of climate-induced population change, including “risky growth” areas where economic opportunities mitigate climate risks, sustaining growth in the face of observed exposure; “tipping point” areas where the amenities are slowly giving way to the disamenity of escalating hazards; and “Climate abandonment” areas experiencing exacerbated out-migration from climate risks, compounded by other out-migration market factors. Even within a single county, these patterns vary significantly, underscoring the importance of localized analyses. Projecting population impacts due to climate risk to 2055, flood risks are projected to impact the largest percentage of areas (82.6%), followed by heatwaves (47.4%), drought (46.6%), wildfires (32.7%), wildfire smoke (21.7%), and tropical cyclone winds (11.1%). The results underscore the importance of understanding hyperlocal patterns of risk and change in order to better forecast future patterns.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cli12090140</doi><orcidid>https://orcid.org/0009-0007-5356-5354</orcidid><orcidid>https://orcid.org/0009-0004-2092-3168</orcidid><orcidid>https://orcid.org/0009-0005-0647-9889</orcidid><orcidid>https://orcid.org/0000-0001-8825-5750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2225-1154 |
ispartof | Climate (Basel), 2024-09, Vol.12 (9), p.140 |
issn | 2225-1154 2225-1154 |
language | eng |
recordid | cdi_proquest_journals_3110431155 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Analysis Climate and population Climate change Climate models Climatic changes Decision making Drought Droughts Economic opportunities Emigration and immigration Environmental hazards Environmental risk Extreme weather Flood forecasting Flood risk Floods Hazard mitigation Heat Heat waves Heatwaves Hurricanes Impact analysis Migration Population Population studies Property values Trends Tropical cyclones United Kingdom Wildfires Winds |
title | A Multi-Hazard Approach to Climate Migration: Testing the Intersection of Climate Hazards, Population Change, and Location Desirability from 2000 to 2020 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Hazard%20Approach%20to%20Climate%20Migration:%20Testing%20the%20Intersection%20of%20Climate%20Hazards,%20Population%20Change,%20and%20Location%20Desirability%20from%202000%20to%202020&rft.jtitle=Climate%20(Basel)&rft.au=Hirsch,%20Zachary%20M.&rft.date=2024-09-01&rft.volume=12&rft.issue=9&rft.spage=140&rft.pages=140-&rft.issn=2225-1154&rft.eissn=2225-1154&rft_id=info:doi/10.3390/cli12090140&rft_dat=%3Cgale_proqu%3EA810690033%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110431155&rft_id=info:pmid/&rft_galeid=A810690033&rfr_iscdi=true |