Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight

It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-09, Vol.14 (9), p.599
Hauptverfasser: Yan, Junzhi, Sun, Yuming, Cai, Junxi, Cai, Ming, Hu, Bo, Yan, Yan, Zhang, Yue, Tang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 599
container_title Catalysts
container_volume 14
creator Yan, Junzhi
Sun, Yuming
Cai, Junxi
Cai, Ming
Hu, Bo
Yan, Yan
Zhang, Yue
Tang, Xu
description It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms.
doi_str_mv 10.3390/catal14090599
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110409740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110409740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-69b9a932481da3081a100fcac7f209566e899df2da31826b30e7eac261217b003</originalsourceid><addsrcrecordid>eNpVkD9PwzAQxS0EEhV0ZLfEAkPgbKdJPKK00Eqtyt-FJXIdu3XV2sV2hm6szHxDPgkpZYBb7qR7797ph9AZgSvGOFxLEcWKpMChx_kB6lDIWZKyND38Mx-jbghLaIsTVpBeB32UzoboGxmNs9hp_GrL-gk_NMLGZp30XUwmrjbaqBqXakrxBfS_3j9p_xIPVVTeLRu792rn8cAuhJXGzvH9wkX389M2GonL1vmo6t8YYWs8UbLVmrDGIxvMfBFP0ZEWq6C6v_0EvdwOnsthMp7ejcqbcSIJh5hkfMYFZzQtSC0YFEQQAC2FzDUF3ssyVXBea9ouSUGzGQOVKyFpRijJZwDsBJ3v7268e2tUiNXSNd62kRUjBFqCebpTJXuV9C4Er3S18WYt_LYiUO2AV_-As2-WUXQb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110409740</pqid></control><display><type>article</type><title>Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yan, Junzhi ; Sun, Yuming ; Cai, Junxi ; Cai, Ming ; Hu, Bo ; Yan, Yan ; Zhang, Yue ; Tang, Xu</creator><creatorcontrib>Yan, Junzhi ; Sun, Yuming ; Cai, Junxi ; Cai, Ming ; Hu, Bo ; Yan, Yan ; Zhang, Yue ; Tang, Xu</creatorcontrib><description>It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal14090599</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Alternative energy sources ; Carbon dioxide ; Carbon sequestration ; Cerium oxides ; Charge efficiency ; Chemical reduction ; Efficiency ; Electrons ; Energy resources ; Heterojunctions ; Light ; Photocatalysis ; Quantum dots ; Reaction mechanisms ; Renewable resources ; Semiconductors ; Separation ; Spectrum analysis ; Surface stability</subject><ispartof>Catalysts, 2024-09, Vol.14 (9), p.599</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-69b9a932481da3081a100fcac7f209566e899df2da31826b30e7eac261217b003</cites><orcidid>0009-0007-2119-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Yan, Junzhi</creatorcontrib><creatorcontrib>Sun, Yuming</creatorcontrib><creatorcontrib>Cai, Junxi</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><title>Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight</title><title>Catalysts</title><description>It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms.</description><subject>Adsorption</subject><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Cerium oxides</subject><subject>Charge efficiency</subject><subject>Chemical reduction</subject><subject>Efficiency</subject><subject>Electrons</subject><subject>Energy resources</subject><subject>Heterojunctions</subject><subject>Light</subject><subject>Photocatalysis</subject><subject>Quantum dots</subject><subject>Reaction mechanisms</subject><subject>Renewable resources</subject><subject>Semiconductors</subject><subject>Separation</subject><subject>Spectrum analysis</subject><subject>Surface stability</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkD9PwzAQxS0EEhV0ZLfEAkPgbKdJPKK00Eqtyt-FJXIdu3XV2sV2hm6szHxDPgkpZYBb7qR7797ph9AZgSvGOFxLEcWKpMChx_kB6lDIWZKyND38Mx-jbghLaIsTVpBeB32UzoboGxmNs9hp_GrL-gk_NMLGZp30XUwmrjbaqBqXakrxBfS_3j9p_xIPVVTeLRu792rn8cAuhJXGzvH9wkX389M2GonL1vmo6t8YYWs8UbLVmrDGIxvMfBFP0ZEWq6C6v_0EvdwOnsthMp7ejcqbcSIJh5hkfMYFZzQtSC0YFEQQAC2FzDUF3ssyVXBea9ouSUGzGQOVKyFpRijJZwDsBJ3v7268e2tUiNXSNd62kRUjBFqCebpTJXuV9C4Er3S18WYt_LYiUO2AV_-As2-WUXQb</recordid><startdate>20240906</startdate><enddate>20240906</enddate><creator>Yan, Junzhi</creator><creator>Sun, Yuming</creator><creator>Cai, Junxi</creator><creator>Cai, Ming</creator><creator>Hu, Bo</creator><creator>Yan, Yan</creator><creator>Zhang, Yue</creator><creator>Tang, Xu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0007-2119-3146</orcidid></search><sort><creationdate>20240906</creationdate><title>Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight</title><author>Yan, Junzhi ; Sun, Yuming ; Cai, Junxi ; Cai, Ming ; Hu, Bo ; Yan, Yan ; Zhang, Yue ; Tang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-69b9a932481da3081a100fcac7f209566e899df2da31826b30e7eac261217b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Cerium oxides</topic><topic>Charge efficiency</topic><topic>Chemical reduction</topic><topic>Efficiency</topic><topic>Electrons</topic><topic>Energy resources</topic><topic>Heterojunctions</topic><topic>Light</topic><topic>Photocatalysis</topic><topic>Quantum dots</topic><topic>Reaction mechanisms</topic><topic>Renewable resources</topic><topic>Semiconductors</topic><topic>Separation</topic><topic>Spectrum analysis</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Junzhi</creatorcontrib><creatorcontrib>Sun, Yuming</creatorcontrib><creatorcontrib>Cai, Junxi</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Junzhi</au><au>Sun, Yuming</au><au>Cai, Junxi</au><au>Cai, Ming</au><au>Hu, Bo</au><au>Yan, Yan</au><au>Zhang, Yue</au><au>Tang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight</atitle><jtitle>Catalysts</jtitle><date>2024-09-06</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><spage>599</spage><pages>599-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal14090599</doi><orcidid>https://orcid.org/0009-0007-2119-3146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2024-09, Vol.14 (9), p.599
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_3110409740
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Adsorption
Alternative energy sources
Carbon dioxide
Carbon sequestration
Cerium oxides
Charge efficiency
Chemical reduction
Efficiency
Electrons
Energy resources
Heterojunctions
Light
Photocatalysis
Quantum dots
Reaction mechanisms
Renewable resources
Semiconductors
Separation
Spectrum analysis
Surface stability
title Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20ZnCdS%20Quantum-Dot-Modified%20CeO2%20(0D%E2%80%932D)%20Heterojunction%20for%20Enhancing%20Photocatalytic%20CO2%20Reduction%20and%20Mechanism%20Insight&rft.jtitle=Catalysts&rft.au=Yan,%20Junzhi&rft.date=2024-09-06&rft.volume=14&rft.issue=9&rft.spage=599&rft.pages=599-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal14090599&rft_dat=%3Cproquest_cross%3E3110409740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110409740&rft_id=info:pmid/&rfr_iscdi=true