On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects
Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaki...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2024-06, Vol.109 (3), p.206-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 3 |
container_start_page | 206 |
container_title | Doklady. Mathematics |
container_volume | 109 |
creator | Kriksin, Yu. A. Tishkin, V. F. |
description | Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively. |
doi_str_mv | 10.1134/S106456242470203X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110367962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110367962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</originalsourceid><addsrcrecordid>eNp1kEtLQzEUhIMoWKs_wF3A9dWcvJq4K0VboVDqA9xd0jRpU9p7a5IW-u9NqeBCXJ2B-WYODEK3QO4BGH94AyK5kJRT3iOUsM8z1AHBoFJM0vOii10d_Ut0ldKKEC4oIR00nTR4ujNNDtnksHe4n5JLaeOajFuPB8sQzTrkwyN-DYtlrrBp5njsfK5GRbk5Hrp243IMFk9mK2dzukYX3qyTu_m5XfTx_PQ-GFXjyfBl0B9XFrTKlXFGGi609IIJ1TNSawAlZhSUJmDYzFutOBBhGZFec-Bz5bRl1jAjOSjWRXen3m1sv3Yu5XrV7mJTXtYMgDDZ05IWCk6UjW1K0fl6G8PGxEMNpD4uV_9ZrmToKZMK2yxc_G3-P_QNw_1t9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110367962</pqid></control><display><type>article</type><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kriksin, Yu. A. ; Tishkin, V. F.</creator><creatorcontrib>Kriksin, Yu. A. ; Tishkin, V. F.</creatorcontrib><description>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S106456242470203X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chirality ; Mathematics ; Mathematics and Statistics ; Metric space ; Triangles</subject><ispartof>Doklady. Mathematics, 2024-06, Vol.109 (3), p.206-212</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1064-5624, Doklady Mathematics, 2024, Vol. 109, No. 3, pp. 206–212. © Pleiades Publishing, Ltd., 2024. ISSN 1064-5624, Doklady Mathematics, 2024. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106456242470203X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106456242470203X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kriksin, Yu. A.</creatorcontrib><creatorcontrib>Tishkin, V. F.</creatorcontrib><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</description><subject>Chirality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Triangles</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLQzEUhIMoWKs_wF3A9dWcvJq4K0VboVDqA9xd0jRpU9p7a5IW-u9NqeBCXJ2B-WYODEK3QO4BGH94AyK5kJRT3iOUsM8z1AHBoFJM0vOii10d_Ut0ldKKEC4oIR00nTR4ujNNDtnksHe4n5JLaeOajFuPB8sQzTrkwyN-DYtlrrBp5njsfK5GRbk5Hrp243IMFk9mK2dzukYX3qyTu_m5XfTx_PQ-GFXjyfBl0B9XFrTKlXFGGi609IIJ1TNSawAlZhSUJmDYzFutOBBhGZFec-Bz5bRl1jAjOSjWRXen3m1sv3Yu5XrV7mJTXtYMgDDZ05IWCk6UjW1K0fl6G8PGxEMNpD4uV_9ZrmToKZMK2yxc_G3-P_QNw_1t9Q</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kriksin, Yu. A.</creator><creator>Tishkin, V. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><author>Kriksin, Yu. A. ; Tishkin, V. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chirality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kriksin, Yu. A.</creatorcontrib><creatorcontrib>Tishkin, V. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kriksin, Yu. A.</au><au>Tishkin, V. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>109</volume><issue>3</issue><spage>206</spage><epage>212</epage><pages>206-212</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106456242470203X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2024-06, Vol.109 (3), p.206-212 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_3110367962 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chirality Mathematics Mathematics and Statistics Metric space Triangles |
title | On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Quantitative%20Assessment%20of%20Chirality:%20Right-%20and%20Left-Handed%20Geometric%20Objects&rft.jtitle=Doklady.%20Mathematics&rft.au=Kriksin,%20Yu.%20A.&rft.date=2024-06-01&rft.volume=109&rft.issue=3&rft.spage=206&rft.epage=212&rft.pages=206-212&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S106456242470203X&rft_dat=%3Cproquest_cross%3E3110367962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110367962&rft_id=info:pmid/&rfr_iscdi=true |