On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects

Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2024-06, Vol.109 (3), p.206-212
Hauptverfasser: Kriksin, Yu. A., Tishkin, V. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 3
container_start_page 206
container_title Doklady. Mathematics
container_volume 109
creator Kriksin, Yu. A.
Tishkin, V. F.
description Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.
doi_str_mv 10.1134/S106456242470203X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110367962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110367962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</originalsourceid><addsrcrecordid>eNp1kEtLQzEUhIMoWKs_wF3A9dWcvJq4K0VboVDqA9xd0jRpU9p7a5IW-u9NqeBCXJ2B-WYODEK3QO4BGH94AyK5kJRT3iOUsM8z1AHBoFJM0vOii10d_Ut0ldKKEC4oIR00nTR4ujNNDtnksHe4n5JLaeOajFuPB8sQzTrkwyN-DYtlrrBp5njsfK5GRbk5Hrp243IMFk9mK2dzukYX3qyTu_m5XfTx_PQ-GFXjyfBl0B9XFrTKlXFGGi609IIJ1TNSawAlZhSUJmDYzFutOBBhGZFec-Bz5bRl1jAjOSjWRXen3m1sv3Yu5XrV7mJTXtYMgDDZ05IWCk6UjW1K0fl6G8PGxEMNpD4uV_9ZrmToKZMK2yxc_G3-P_QNw_1t9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110367962</pqid></control><display><type>article</type><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kriksin, Yu. A. ; Tishkin, V. F.</creator><creatorcontrib>Kriksin, Yu. A. ; Tishkin, V. F.</creatorcontrib><description>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S106456242470203X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chirality ; Mathematics ; Mathematics and Statistics ; Metric space ; Triangles</subject><ispartof>Doklady. Mathematics, 2024-06, Vol.109 (3), p.206-212</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1064-5624, Doklady Mathematics, 2024, Vol. 109, No. 3, pp. 206–212. © Pleiades Publishing, Ltd., 2024. ISSN 1064-5624, Doklady Mathematics, 2024. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106456242470203X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106456242470203X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kriksin, Yu. A.</creatorcontrib><creatorcontrib>Tishkin, V. F.</creatorcontrib><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</description><subject>Chirality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Triangles</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLQzEUhIMoWKs_wF3A9dWcvJq4K0VboVDqA9xd0jRpU9p7a5IW-u9NqeBCXJ2B-WYODEK3QO4BGH94AyK5kJRT3iOUsM8z1AHBoFJM0vOii10d_Ut0ldKKEC4oIR00nTR4ujNNDtnksHe4n5JLaeOajFuPB8sQzTrkwyN-DYtlrrBp5njsfK5GRbk5Hrp243IMFk9mK2dzukYX3qyTu_m5XfTx_PQ-GFXjyfBl0B9XFrTKlXFGGi609IIJ1TNSawAlZhSUJmDYzFutOBBhGZFec-Bz5bRl1jAjOSjWRXen3m1sv3Yu5XrV7mJTXtYMgDDZ05IWCk6UjW1K0fl6G8PGxEMNpD4uV_9ZrmToKZMK2yxc_G3-P_QNw_1t9Q</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kriksin, Yu. A.</creator><creator>Tishkin, V. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</title><author>Kriksin, Yu. A. ; Tishkin, V. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-aea6a4596f53587a6991185b218901a3bfc984105c306f9414d8e9c3ca3a64183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chirality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kriksin, Yu. A.</creatorcontrib><creatorcontrib>Tishkin, V. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kriksin, Yu. A.</au><au>Tishkin, V. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>109</volume><issue>3</issue><spage>206</spage><epage>212</epage><pages>206-212</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Two methods for quantitatively assessing the chirality of a set are considered. As a measure of the noncoincidence between two sets, one method uses the area of the symmetric difference between them, and the other, the Hausdorff distance between them. It is shown that these methods, generally speaking, do not provide a correct quantitative estimate for a fairly wide class of sets, such as bounded Borel sets. Using examples of flat triangles and convex quadrangles, we consider the problem of dividing geometric objects into right- and left-handed ones. For triangles, level lines of two versions of the chirality measure are calculated on the plane of angular parameters. For a spatial helix, the values of two versions of the chirality index are found by calculating the mixed product of vectors and the Hausdorff distance between two sets, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106456242470203X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2024-06, Vol.109 (3), p.206-212
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_3110367962
source SpringerLink Journals - AutoHoldings
subjects Chirality
Mathematics
Mathematics and Statistics
Metric space
Triangles
title On Quantitative Assessment of Chirality: Right- and Left-Handed Geometric Objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Quantitative%20Assessment%20of%20Chirality:%20Right-%20and%20Left-Handed%20Geometric%20Objects&rft.jtitle=Doklady.%20Mathematics&rft.au=Kriksin,%20Yu.%20A.&rft.date=2024-06-01&rft.volume=109&rft.issue=3&rft.spage=206&rft.epage=212&rft.pages=206-212&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S106456242470203X&rft_dat=%3Cproquest_cross%3E3110367962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110367962&rft_id=info:pmid/&rfr_iscdi=true