Complexity-driven product design: part 1—methodological framework and geometrical complexity index

Modern industries are experiencing radical changes due to the introduction of high technological innovations. In this context, even more highly complex and customized products are required, increasing the need of tending towards the concept of complexity for free . In addition, new products are conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on interactive design and manufacturing 2024-10, Vol.18 (8), p.5441-5456
Hauptverfasser: Greco, Alessandro, Manco, Pasquale, Russo, Mario Brandon, Gerbino, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern industries are experiencing radical changes due to the introduction of high technological innovations. In this context, even more highly complex and customized products are required, increasing the need of tending towards the concept of complexity for free . In addition, new products are conceived with the circular economy in mind, considering possible multi life-cycle at the early design stage to reduce time and costs while ensuring high quality standards. To evaluate the overall product complexity, this research combines geometrical, manufacturing, assembly, and disassembly complexity features, typically treated separately in the literature. The research is divided into two parts and proposes a novel methodological framework for assessing product complexity with an overall view, integrating many aspects of product life cycle. The framework aims to create a rank of product configurations, on the base of complexity. Making complexity assessment procedures objective is essential to effectively support decision-making processes, especially when introducing advanced manufacturing technologies such as Additive Manufacturing (AM). Additionally, it is necessary to know the complexity of the individual components before the overall assembly. This paper deals with the first part of the research, proposing the aforementioned novel methodological framework, with a great focus on geometrical complexity. A geometrical complexity index is defined through experimental and numerical surveys, involving CAD modeling experts and considering numerous metrics found in the technical literature. The proposed methodological framework and the geometrical complexity metric can provide useful tools for businesses looking to evaluate their product complexity and identify areas for improvement.
ISSN:1955-2513
1955-2505
DOI:10.1007/s12008-023-01426-1