An overview of generalized entropic forms (a)
The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, intro...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2021-03, Vol.133 (5), p.50005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 50005 |
container_title | Europhysics letters |
container_volume | 133 |
creator | Ilić, V. M. Korbel, J. Gupta, S. Scarfone, A. M. |
description | The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree
)), by Sharma and Mittal (entropies of order
), and by Hanel and Thurner (entropies of class
). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations
à la
Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground. |
doi_str_mv | 10.1209/0295-5075/133/50005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110110884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwBFwqcYFDqRM3WXqcJgZIk7jAOfJaB3XampF0Q_D0dAxx8uX7bf-fENcS7qWCqgBV6VzDRBcSsdAAoE_ESCpr8tLq8lSM_olzcZHSCkBKK81I5NMuC3uO-5Y_s-Czd-440rr95ibjro9h29aZD3GTslu6uxRnntaJr_7mWLzNH15nT_ni5fF5Nl3kNSrV54QWuKGJrRtWlhrVsF3WYAjZWJSssFJGE2myhsBaRt_Q0tdDSmPlDY7FzXHvNoaPHafercIudsNJh1IOvw-hcqDwSNUxpBTZu21sNxS_nAR38OIOrd2htRu8uF8v-ANJUVRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110884</pqid></control><display><type>article</type><title>An overview of generalized entropic forms (a)</title><source>IOP Publishing Journals</source><creator>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</creator><creatorcontrib>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</creatorcontrib><description>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree
)), by Sharma and Mittal (entropies of order
), and by Hanel and Thurner (entropies of class
). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations
à la
Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/133/50005</identifier><language>eng</language><publisher>Les Ulis: IOP Publishing</publisher><subject>Axioms ; Information theory</subject><ispartof>Europhysics letters, 2021-03, Vol.133 (5), p.50005</ispartof><rights>Copyright © 2021 EPLA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</citedby><cites>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</cites><orcidid>0000-0001-6699-5889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ilić, V. M.</creatorcontrib><creatorcontrib>Korbel, J.</creatorcontrib><creatorcontrib>Gupta, S.</creatorcontrib><creatorcontrib>Scarfone, A. M.</creatorcontrib><title>An overview of generalized entropic forms (a)</title><title>Europhysics letters</title><description>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree
)), by Sharma and Mittal (entropies of order
), and by Hanel and Thurner (entropies of class
). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations
à la
Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</description><subject>Axioms</subject><subject>Information theory</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwBFwqcYFDqRM3WXqcJgZIk7jAOfJaB3XampF0Q_D0dAxx8uX7bf-fENcS7qWCqgBV6VzDRBcSsdAAoE_ESCpr8tLq8lSM_olzcZHSCkBKK81I5NMuC3uO-5Y_s-Czd-440rr95ibjro9h29aZD3GTslu6uxRnntaJr_7mWLzNH15nT_ni5fF5Nl3kNSrV54QWuKGJrRtWlhrVsF3WYAjZWJSssFJGE2myhsBaRt_Q0tdDSmPlDY7FzXHvNoaPHafercIudsNJh1IOvw-hcqDwSNUxpBTZu21sNxS_nAR38OIOrd2htRu8uF8v-ANJUVRC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ilić, V. M.</creator><creator>Korbel, J.</creator><creator>Gupta, S.</creator><creator>Scarfone, A. M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6699-5889</orcidid></search><sort><creationdate>20210301</creationdate><title>An overview of generalized entropic forms (a)</title><author>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axioms</topic><topic>Information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilić, V. M.</creatorcontrib><creatorcontrib>Korbel, J.</creatorcontrib><creatorcontrib>Gupta, S.</creatorcontrib><creatorcontrib>Scarfone, A. M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilić, V. M.</au><au>Korbel, J.</au><au>Gupta, S.</au><au>Scarfone, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of generalized entropic forms (a)</atitle><jtitle>Europhysics letters</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>133</volume><issue>5</issue><spage>50005</spage><pages>50005-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree
)), by Sharma and Mittal (entropies of order
), and by Hanel and Thurner (entropies of class
). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations
à la
Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</abstract><cop>Les Ulis</cop><pub>IOP Publishing</pub><doi>10.1209/0295-5075/133/50005</doi><orcidid>https://orcid.org/0000-0001-6699-5889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2021-03, Vol.133 (5), p.50005 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_proquest_journals_3110110884 |
source | IOP Publishing Journals |
subjects | Axioms Information theory |
title | An overview of generalized entropic forms (a) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20generalized%20entropic%20forms%20(a)&rft.jtitle=Europhysics%20letters&rft.au=Ili%C4%87,%20V.%20M.&rft.date=2021-03-01&rft.volume=133&rft.issue=5&rft.spage=50005&rft.pages=50005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/0295-5075/133/50005&rft_dat=%3Cproquest_cross%3E3110110884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110884&rft_id=info:pmid/&rfr_iscdi=true |