An overview of generalized entropic forms (a)

The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2021-03, Vol.133 (5), p.50005
Hauptverfasser: Ilić, V. M., Korbel, J., Gupta, S., Scarfone, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 50005
container_title Europhysics letters
container_volume 133
creator Ilić, V. M.
Korbel, J.
Gupta, S.
Scarfone, A. M.
description The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree )), by Sharma and Mittal (entropies of order ), and by Hanel and Thurner (entropies of class ). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations à la Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.
doi_str_mv 10.1209/0295-5075/133/50005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110110884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwBFwqcYFDqRM3WXqcJgZIk7jAOfJaB3XampF0Q_D0dAxx8uX7bf-fENcS7qWCqgBV6VzDRBcSsdAAoE_ESCpr8tLq8lSM_olzcZHSCkBKK81I5NMuC3uO-5Y_s-Czd-440rr95ibjro9h29aZD3GTslu6uxRnntaJr_7mWLzNH15nT_ni5fF5Nl3kNSrV54QWuKGJrRtWlhrVsF3WYAjZWJSssFJGE2myhsBaRt_Q0tdDSmPlDY7FzXHvNoaPHafercIudsNJh1IOvw-hcqDwSNUxpBTZu21sNxS_nAR38OIOrd2htRu8uF8v-ANJUVRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110884</pqid></control><display><type>article</type><title>An overview of generalized entropic forms (a)</title><source>IOP Publishing Journals</source><creator>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</creator><creatorcontrib>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</creatorcontrib><description>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree )), by Sharma and Mittal (entropies of order ), and by Hanel and Thurner (entropies of class ). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations à la Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/133/50005</identifier><language>eng</language><publisher>Les Ulis: IOP Publishing</publisher><subject>Axioms ; Information theory</subject><ispartof>Europhysics letters, 2021-03, Vol.133 (5), p.50005</ispartof><rights>Copyright © 2021 EPLA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</citedby><cites>FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</cites><orcidid>0000-0001-6699-5889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ilić, V. M.</creatorcontrib><creatorcontrib>Korbel, J.</creatorcontrib><creatorcontrib>Gupta, S.</creatorcontrib><creatorcontrib>Scarfone, A. M.</creatorcontrib><title>An overview of generalized entropic forms (a)</title><title>Europhysics letters</title><description>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree )), by Sharma and Mittal (entropies of order ), and by Hanel and Thurner (entropies of class ). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations à la Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</description><subject>Axioms</subject><subject>Information theory</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMhiMEEmPwBFwqcYFDqRM3WXqcJgZIk7jAOfJaB3XampF0Q_D0dAxx8uX7bf-fENcS7qWCqgBV6VzDRBcSsdAAoE_ESCpr8tLq8lSM_olzcZHSCkBKK81I5NMuC3uO-5Y_s-Czd-440rr95ibjro9h29aZD3GTslu6uxRnntaJr_7mWLzNH15nT_ni5fF5Nl3kNSrV54QWuKGJrRtWlhrVsF3WYAjZWJSssFJGE2myhsBaRt_Q0tdDSmPlDY7FzXHvNoaPHafercIudsNJh1IOvw-hcqDwSNUxpBTZu21sNxS_nAR38OIOrd2htRu8uF8v-ANJUVRC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ilić, V. M.</creator><creator>Korbel, J.</creator><creator>Gupta, S.</creator><creator>Scarfone, A. M.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6699-5889</orcidid></search><sort><creationdate>20210301</creationdate><title>An overview of generalized entropic forms (a)</title><author>Ilić, V. M. ; Korbel, J. ; Gupta, S. ; Scarfone, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a380eda78cde28ad2de8bc06a3e6831e239265aa5a86a088e3fdabfc80e539f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axioms</topic><topic>Information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilić, V. M.</creatorcontrib><creatorcontrib>Korbel, J.</creatorcontrib><creatorcontrib>Gupta, S.</creatorcontrib><creatorcontrib>Scarfone, A. M.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilić, V. M.</au><au>Korbel, J.</au><au>Gupta, S.</au><au>Scarfone, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of generalized entropic forms (a)</atitle><jtitle>Europhysics letters</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>133</volume><issue>5</issue><spage>50005</spage><pages>50005-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><abstract>The aim of this focus article is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree )), by Sharma and Mittal (entropies of order ), and by Hanel and Thurner (entropies of class ). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations à la Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.</abstract><cop>Les Ulis</cop><pub>IOP Publishing</pub><doi>10.1209/0295-5075/133/50005</doi><orcidid>https://orcid.org/0000-0001-6699-5889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2021-03, Vol.133 (5), p.50005
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_journals_3110110884
source IOP Publishing Journals
subjects Axioms
Information theory
title An overview of generalized entropic forms (a)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20generalized%20entropic%20forms%20(a)&rft.jtitle=Europhysics%20letters&rft.au=Ili%C4%87,%20V.%20M.&rft.date=2021-03-01&rft.volume=133&rft.issue=5&rft.spage=50005&rft.pages=50005-&rft.issn=0295-5075&rft.eissn=1286-4854&rft_id=info:doi/10.1209/0295-5075/133/50005&rft_dat=%3Cproquest_cross%3E3110110884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110884&rft_id=info:pmid/&rfr_iscdi=true