Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data
This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and veg...
Gespeichert in:
Veröffentlicht in: | Journal of population economics 2024-12, Vol.37 (4), p.67, Article 67 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 67 |
container_title | Journal of population economics |
container_volume | 37 |
creator | Das, Sumonkanti Basher, Syed Abul Baffour, Bernard Godwin, Penny Richardson, Alice Rashid, Salim |
description | This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis. |
doi_str_mv | 10.1007/s00148-024-01043-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110110819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt_wFPAc3Rms5vNHrX4USh4Ua8hzUe7ZZutSVbw3xutzMDMYeZ9eR9CrhFuEaC9SwBYSwZVzQCh5kyckBnWvGJYt80pmUHHedk5PycXKe0AgEtZz8jHcn-I45ez1KXc73V2iY6emm0_WLrXQ5hy7HM_BpqjCzbRPtAHHTaDti5t6ZT6sKHR7cfsWHIhFSGrs74kZ14PyV39zzl5f3p8W7yw1evzcnG_YgYbkZmpUCP3nRONw2a9Ft6uJbceuxY77qWtJJhGGClACOOtbOtSujFQHptO8zm5OeqWEJ9TiaB24xRDsVQcEUrLIjQn1fHKxDGl6Lw6xJI1fisE9ctPHfmpwk_98VOC_wDRcGNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110819</pqid></control><display><type>article</type><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><source>Springer Nature - Complete Springer Journals</source><creator>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</creator><creatorcontrib>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</creatorcontrib><description>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</description><identifier>ISSN: 0933-1433</identifier><identifier>EISSN: 1432-1475</identifier><identifier>DOI: 10.1007/s00148-024-01043-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bayesian analysis ; Children ; Environmental aspects ; Environmental factors ; Estimates ; Health surveys ; Light intensity ; Luminous intensity ; Malnutrition ; Mathematical models ; Spatial data ; Surveys ; Trends ; Urbanization ; Vegetation</subject><ispartof>Journal of population economics, 2024-12, Vol.37 (4), p.67, Article 67</ispartof><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</cites><orcidid>0000-0002-9820-2617 ; 0000-0001-7084-1524 ; 0000-0003-1560-2349 ; 0000-0003-3918-8285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Basher, Syed Abul</creatorcontrib><creatorcontrib>Baffour, Bernard</creatorcontrib><creatorcontrib>Godwin, Penny</creatorcontrib><creatorcontrib>Richardson, Alice</creatorcontrib><creatorcontrib>Rashid, Salim</creatorcontrib><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><title>Journal of population economics</title><description>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</description><subject>Bayesian analysis</subject><subject>Children</subject><subject>Environmental aspects</subject><subject>Environmental factors</subject><subject>Estimates</subject><subject>Health surveys</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Malnutrition</subject><subject>Mathematical models</subject><subject>Spatial data</subject><subject>Surveys</subject><subject>Trends</subject><subject>Urbanization</subject><subject>Vegetation</subject><issn>0933-1433</issn><issn>1432-1475</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt_wFPAc3Rms5vNHrX4USh4Ua8hzUe7ZZutSVbw3xutzMDMYeZ9eR9CrhFuEaC9SwBYSwZVzQCh5kyckBnWvGJYt80pmUHHedk5PycXKe0AgEtZz8jHcn-I45ez1KXc73V2iY6emm0_WLrXQ5hy7HM_BpqjCzbRPtAHHTaDti5t6ZT6sKHR7cfsWHIhFSGrs74kZ14PyV39zzl5f3p8W7yw1evzcnG_YgYbkZmpUCP3nRONw2a9Ft6uJbceuxY77qWtJJhGGClACOOtbOtSujFQHptO8zm5OeqWEJ9TiaB24xRDsVQcEUrLIjQn1fHKxDGl6Lw6xJI1fisE9ctPHfmpwk_98VOC_wDRcGNg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Das, Sumonkanti</creator><creator>Basher, Syed Abul</creator><creator>Baffour, Bernard</creator><creator>Godwin, Penny</creator><creator>Richardson, Alice</creator><creator>Rashid, Salim</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9820-2617</orcidid><orcidid>https://orcid.org/0000-0001-7084-1524</orcidid><orcidid>https://orcid.org/0000-0003-1560-2349</orcidid><orcidid>https://orcid.org/0000-0003-3918-8285</orcidid></search><sort><creationdate>202412</creationdate><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><author>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Children</topic><topic>Environmental aspects</topic><topic>Environmental factors</topic><topic>Estimates</topic><topic>Health surveys</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Malnutrition</topic><topic>Mathematical models</topic><topic>Spatial data</topic><topic>Surveys</topic><topic>Trends</topic><topic>Urbanization</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Basher, Syed Abul</creatorcontrib><creatorcontrib>Baffour, Bernard</creatorcontrib><creatorcontrib>Godwin, Penny</creatorcontrib><creatorcontrib>Richardson, Alice</creatorcontrib><creatorcontrib>Rashid, Salim</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of population economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Sumonkanti</au><au>Basher, Syed Abul</au><au>Baffour, Bernard</au><au>Godwin, Penny</au><au>Richardson, Alice</au><au>Rashid, Salim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</atitle><jtitle>Journal of population economics</jtitle><date>2024-12</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>67</spage><pages>67-</pages><artnum>67</artnum><issn>0933-1433</issn><eissn>1432-1475</eissn><abstract>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00148-024-01043-6</doi><orcidid>https://orcid.org/0000-0002-9820-2617</orcidid><orcidid>https://orcid.org/0000-0001-7084-1524</orcidid><orcidid>https://orcid.org/0000-0003-1560-2349</orcidid><orcidid>https://orcid.org/0000-0003-3918-8285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-1433 |
ispartof | Journal of population economics, 2024-12, Vol.37 (4), p.67, Article 67 |
issn | 0933-1433 1432-1475 |
language | eng |
recordid | cdi_proquest_journals_3110110819 |
source | Springer Nature - Complete Springer Journals |
subjects | Bayesian analysis Children Environmental aspects Environmental factors Estimates Health surveys Light intensity Luminous intensity Malnutrition Mathematical models Spatial data Surveys Trends Urbanization Vegetation |
title | Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20estimates%20of%20child%20malnutrition%20trends%20in%20Bangladesh%20using%20remote-sensed%20data&rft.jtitle=Journal%20of%20population%20economics&rft.au=Das,%20Sumonkanti&rft.date=2024-12&rft.volume=37&rft.issue=4&rft.spage=67&rft.pages=67-&rft.artnum=67&rft.issn=0933-1433&rft.eissn=1432-1475&rft_id=info:doi/10.1007/s00148-024-01043-6&rft_dat=%3Cproquest_cross%3E3110110819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110819&rft_id=info:pmid/&rfr_iscdi=true |