Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data

This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and veg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of population economics 2024-12, Vol.37 (4), p.67, Article 67
Hauptverfasser: Das, Sumonkanti, Basher, Syed Abul, Baffour, Bernard, Godwin, Penny, Richardson, Alice, Rashid, Salim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 67
container_title Journal of population economics
container_volume 37
creator Das, Sumonkanti
Basher, Syed Abul
Baffour, Bernard
Godwin, Penny
Richardson, Alice
Rashid, Salim
description This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.
doi_str_mv 10.1007/s00148-024-01043-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3110110819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110110819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt_wFPAc3Rms5vNHrX4USh4Ua8hzUe7ZZutSVbw3xutzMDMYeZ9eR9CrhFuEaC9SwBYSwZVzQCh5kyckBnWvGJYt80pmUHHedk5PycXKe0AgEtZz8jHcn-I45ez1KXc73V2iY6emm0_WLrXQ5hy7HM_BpqjCzbRPtAHHTaDti5t6ZT6sKHR7cfsWHIhFSGrs74kZ14PyV39zzl5f3p8W7yw1evzcnG_YgYbkZmpUCP3nRONw2a9Ft6uJbceuxY77qWtJJhGGClACOOtbOtSujFQHptO8zm5OeqWEJ9TiaB24xRDsVQcEUrLIjQn1fHKxDGl6Lw6xJI1fisE9ctPHfmpwk_98VOC_wDRcGNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110110819</pqid></control><display><type>article</type><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><source>Springer Nature - Complete Springer Journals</source><creator>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</creator><creatorcontrib>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</creatorcontrib><description>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</description><identifier>ISSN: 0933-1433</identifier><identifier>EISSN: 1432-1475</identifier><identifier>DOI: 10.1007/s00148-024-01043-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bayesian analysis ; Children ; Environmental aspects ; Environmental factors ; Estimates ; Health surveys ; Light intensity ; Luminous intensity ; Malnutrition ; Mathematical models ; Spatial data ; Surveys ; Trends ; Urbanization ; Vegetation</subject><ispartof>Journal of population economics, 2024-12, Vol.37 (4), p.67, Article 67</ispartof><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</cites><orcidid>0000-0002-9820-2617 ; 0000-0001-7084-1524 ; 0000-0003-1560-2349 ; 0000-0003-3918-8285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Basher, Syed Abul</creatorcontrib><creatorcontrib>Baffour, Bernard</creatorcontrib><creatorcontrib>Godwin, Penny</creatorcontrib><creatorcontrib>Richardson, Alice</creatorcontrib><creatorcontrib>Rashid, Salim</creatorcontrib><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><title>Journal of population economics</title><description>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</description><subject>Bayesian analysis</subject><subject>Children</subject><subject>Environmental aspects</subject><subject>Environmental factors</subject><subject>Estimates</subject><subject>Health surveys</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Malnutrition</subject><subject>Mathematical models</subject><subject>Spatial data</subject><subject>Surveys</subject><subject>Trends</subject><subject>Urbanization</subject><subject>Vegetation</subject><issn>0933-1433</issn><issn>1432-1475</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt_wFPAc3Rms5vNHrX4USh4Ua8hzUe7ZZutSVbw3xutzMDMYeZ9eR9CrhFuEaC9SwBYSwZVzQCh5kyckBnWvGJYt80pmUHHedk5PycXKe0AgEtZz8jHcn-I45ez1KXc73V2iY6emm0_WLrXQ5hy7HM_BpqjCzbRPtAHHTaDti5t6ZT6sKHR7cfsWHIhFSGrs74kZ14PyV39zzl5f3p8W7yw1evzcnG_YgYbkZmpUCP3nRONw2a9Ft6uJbceuxY77qWtJJhGGClACOOtbOtSujFQHptO8zm5OeqWEJ9TiaB24xRDsVQcEUrLIjQn1fHKxDGl6Lw6xJI1fisE9ctPHfmpwk_98VOC_wDRcGNg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Das, Sumonkanti</creator><creator>Basher, Syed Abul</creator><creator>Baffour, Bernard</creator><creator>Godwin, Penny</creator><creator>Richardson, Alice</creator><creator>Rashid, Salim</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9820-2617</orcidid><orcidid>https://orcid.org/0000-0001-7084-1524</orcidid><orcidid>https://orcid.org/0000-0003-1560-2349</orcidid><orcidid>https://orcid.org/0000-0003-3918-8285</orcidid></search><sort><creationdate>202412</creationdate><title>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</title><author>Das, Sumonkanti ; Basher, Syed Abul ; Baffour, Bernard ; Godwin, Penny ; Richardson, Alice ; Rashid, Salim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-c21a13f9e65e15bb6fdb83df197193f8d280c56c86066cfd874747a5c021a59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Children</topic><topic>Environmental aspects</topic><topic>Environmental factors</topic><topic>Estimates</topic><topic>Health surveys</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Malnutrition</topic><topic>Mathematical models</topic><topic>Spatial data</topic><topic>Surveys</topic><topic>Trends</topic><topic>Urbanization</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Sumonkanti</creatorcontrib><creatorcontrib>Basher, Syed Abul</creatorcontrib><creatorcontrib>Baffour, Bernard</creatorcontrib><creatorcontrib>Godwin, Penny</creatorcontrib><creatorcontrib>Richardson, Alice</creatorcontrib><creatorcontrib>Rashid, Salim</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of population economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Sumonkanti</au><au>Basher, Syed Abul</au><au>Baffour, Bernard</au><au>Godwin, Penny</au><au>Richardson, Alice</au><au>Rashid, Salim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data</atitle><jtitle>Journal of population economics</jtitle><date>2024-12</date><risdate>2024</risdate><volume>37</volume><issue>4</issue><spage>67</spage><pages>67-</pages><artnum>67</artnum><issn>0933-1433</issn><eissn>1432-1475</eissn><abstract>This study investigates the trends in chronic malnutrition (stunting) among young children across Bangladesh’s 64 districts and 544 sub-districts from 2000 to 2018. We utilized remote-sensed data–nighttime light intensity to indicate urbanization, and environmental factors like precipitation and vegetation levels–to examine patterns of stunting. Our primary data source was the Bangladesh Demographic and Health Survey, conducted six times within the study period. Using Bayesian multilevel time-series models, we integrated cross-sectional, temporal, and spatial data to estimate stunting rates for years not covered by the direct survey information. This approach, enhanced by remote-sensed data, allowed for greater prediction accuracy by incorporating information from neighboring areas. Our findings show a significant reduction in national stunting rates, from nearly 50% in 2000 to about 30% in 2018. Despite this overall progress, some districts have consistently high levels of stunting, while others show fluctuating levels. Our model gives more precise sub-district estimates than previous methods, which were limited by data gaps. The study highlights Bangladesh’s advancements in reducing child stunting, highlighting the value of integrating remote-sensed data for more precise and credible analysis.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00148-024-01043-6</doi><orcidid>https://orcid.org/0000-0002-9820-2617</orcidid><orcidid>https://orcid.org/0000-0001-7084-1524</orcidid><orcidid>https://orcid.org/0000-0003-1560-2349</orcidid><orcidid>https://orcid.org/0000-0003-3918-8285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0933-1433
ispartof Journal of population economics, 2024-12, Vol.37 (4), p.67, Article 67
issn 0933-1433
1432-1475
language eng
recordid cdi_proquest_journals_3110110819
source Springer Nature - Complete Springer Journals
subjects Bayesian analysis
Children
Environmental aspects
Environmental factors
Estimates
Health surveys
Light intensity
Luminous intensity
Malnutrition
Mathematical models
Spatial data
Surveys
Trends
Urbanization
Vegetation
title Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20estimates%20of%20child%20malnutrition%20trends%20in%20Bangladesh%20using%20remote-sensed%20data&rft.jtitle=Journal%20of%20population%20economics&rft.au=Das,%20Sumonkanti&rft.date=2024-12&rft.volume=37&rft.issue=4&rft.spage=67&rft.pages=67-&rft.artnum=67&rft.issn=0933-1433&rft.eissn=1432-1475&rft_id=info:doi/10.1007/s00148-024-01043-6&rft_dat=%3Cproquest_cross%3E3110110819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110110819&rft_id=info:pmid/&rfr_iscdi=true