Generalized variational principles of the Benney-Lin equation arising in fluid dynamics
Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is stud...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2022-08, Vol.139 (3), p.33006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 33006 |
container_title | Europhysics letters |
container_volume | 139 |
creator | Wang, Kang-Jia Wang, Jian-Fang |
description | Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics. |
doi_str_mv | 10.1209/0295-5075/ac3cce |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3110106136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110106136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMouK7ePQY8eLHupGna5qiiq7DgRfEY0mSiWbptt2mF9dfbWtGLeBqYed_A9wg5ZXDJYpALiKWIBGRioQ03BvfIjMV5GiW5SPbJ7Od8SI5CWAMwlrN0Rl6WWGGrS_-Blr7r1uvO15UuadP6yvimxEBrR7s3pNdYVbiLVr6iuO2_ODoEgq9e6bBzZe8ttbtKb7wJx-TA6TLgyfeck-e726eb-2j1uHy4uVpFhifQRXmexcAspGBRGi1RcoaySKx1PHNWg0PIpbGFNk7HBS-STCQxxqJwohAi5XNyNv1t2nrbY-jUuu7boUBQnDFgkDI-UjBRpq1DaNGpod5GtzvFQI361OhHjX7UpG-IXEwRXze_P__Bz__AsSkV41JxxTlAqpqh1iczJYBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110106136</pqid></control><display><type>article</type><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><source>IOP Publishing Journals</source><creator>Wang, Kang-Jia ; Wang, Jian-Fang</creator><creatorcontrib>Wang, Kang-Jia ; Wang, Jian-Fang</creatorcontrib><description>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/ac3cce</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Conservation laws ; Dynamic structural analysis ; Fluid dynamics ; Inverse method ; Nonlinear differential equations ; Nonlinear dynamics ; Partial differential equations ; Variational principles</subject><ispartof>Europhysics letters, 2022-08, Vol.139 (3), p.33006</ispartof><rights>Copyright © 2022 EPLA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</citedby><cites>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</cites><orcidid>0000-0002-3905-0844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/ac3cce/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Wang, Kang-Jia</creatorcontrib><creatorcontrib>Wang, Jian-Fang</creatorcontrib><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</description><subject>Conservation laws</subject><subject>Dynamic structural analysis</subject><subject>Fluid dynamics</subject><subject>Inverse method</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear dynamics</subject><subject>Partial differential equations</subject><subject>Variational principles</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMouK7ePQY8eLHupGna5qiiq7DgRfEY0mSiWbptt2mF9dfbWtGLeBqYed_A9wg5ZXDJYpALiKWIBGRioQ03BvfIjMV5GiW5SPbJ7Od8SI5CWAMwlrN0Rl6WWGGrS_-Blr7r1uvO15UuadP6yvimxEBrR7s3pNdYVbiLVr6iuO2_ODoEgq9e6bBzZe8ttbtKb7wJx-TA6TLgyfeck-e726eb-2j1uHy4uVpFhifQRXmexcAspGBRGi1RcoaySKx1PHNWg0PIpbGFNk7HBS-STCQxxqJwohAi5XNyNv1t2nrbY-jUuu7boUBQnDFgkDI-UjBRpq1DaNGpod5GtzvFQI361OhHjX7UpG-IXEwRXze_P__Bz__AsSkV41JxxTlAqpqh1iczJYBf</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Kang-Jia</creator><creator>Wang, Jian-Fang</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3905-0844</orcidid></search><sort><creationdate>20220801</creationdate><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><author>Wang, Kang-Jia ; Wang, Jian-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conservation laws</topic><topic>Dynamic structural analysis</topic><topic>Fluid dynamics</topic><topic>Inverse method</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear dynamics</topic><topic>Partial differential equations</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kang-Jia</creatorcontrib><creatorcontrib>Wang, Jian-Fang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kang-Jia</au><au>Wang, Jian-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>139</volume><issue>3</issue><spage>33006</spage><pages>33006-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/ac3cce</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3905-0844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2022-08, Vol.139 (3), p.33006 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_proquest_journals_3110106136 |
source | IOP Publishing Journals |
subjects | Conservation laws Dynamic structural analysis Fluid dynamics Inverse method Nonlinear differential equations Nonlinear dynamics Partial differential equations Variational principles |
title | Generalized variational principles of the Benney-Lin equation arising in fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20variational%20principles%20of%20the%20Benney-Lin%20equation%20arising%20in%20fluid%20dynamics&rft.jtitle=Europhysics%20letters&rft.au=Wang,%20Kang-Jia&rft.date=2022-08-01&rft.volume=139&rft.issue=3&rft.spage=33006&rft.pages=33006-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/ac3cce&rft_dat=%3Cproquest_iop_j%3E3110106136%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110106136&rft_id=info:pmid/&rfr_iscdi=true |