Generalized variational principles of the Benney-Lin equation arising in fluid dynamics

Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2022-08, Vol.139 (3), p.33006
Hauptverfasser: Wang, Kang-Jia, Wang, Jian-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 33006
container_title Europhysics letters
container_volume 139
creator Wang, Kang-Jia
Wang, Jian-Fang
description Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.
doi_str_mv 10.1209/0295-5075/ac3cce
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3110106136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110106136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMouK7ePQY8eLHupGna5qiiq7DgRfEY0mSiWbptt2mF9dfbWtGLeBqYed_A9wg5ZXDJYpALiKWIBGRioQ03BvfIjMV5GiW5SPbJ7Od8SI5CWAMwlrN0Rl6WWGGrS_-Blr7r1uvO15UuadP6yvimxEBrR7s3pNdYVbiLVr6iuO2_ODoEgq9e6bBzZe8ttbtKb7wJx-TA6TLgyfeck-e726eb-2j1uHy4uVpFhifQRXmexcAspGBRGi1RcoaySKx1PHNWg0PIpbGFNk7HBS-STCQxxqJwohAi5XNyNv1t2nrbY-jUuu7boUBQnDFgkDI-UjBRpq1DaNGpod5GtzvFQI361OhHjX7UpG-IXEwRXze_P__Bz__AsSkV41JxxTlAqpqh1iczJYBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110106136</pqid></control><display><type>article</type><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><source>IOP Publishing Journals</source><creator>Wang, Kang-Jia ; Wang, Jian-Fang</creator><creatorcontrib>Wang, Kang-Jia ; Wang, Jian-Fang</creatorcontrib><description>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/ac3cce</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Conservation laws ; Dynamic structural analysis ; Fluid dynamics ; Inverse method ; Nonlinear differential equations ; Nonlinear dynamics ; Partial differential equations ; Variational principles</subject><ispartof>Europhysics letters, 2022-08, Vol.139 (3), p.33006</ispartof><rights>Copyright © 2022 EPLA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</citedby><cites>FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</cites><orcidid>0000-0002-3905-0844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1209/0295-5075/ac3cce/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Wang, Kang-Jia</creatorcontrib><creatorcontrib>Wang, Jian-Fang</creatorcontrib><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</description><subject>Conservation laws</subject><subject>Dynamic structural analysis</subject><subject>Fluid dynamics</subject><subject>Inverse method</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear dynamics</subject><subject>Partial differential equations</subject><subject>Variational principles</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMouK7ePQY8eLHupGna5qiiq7DgRfEY0mSiWbptt2mF9dfbWtGLeBqYed_A9wg5ZXDJYpALiKWIBGRioQ03BvfIjMV5GiW5SPbJ7Od8SI5CWAMwlrN0Rl6WWGGrS_-Blr7r1uvO15UuadP6yvimxEBrR7s3pNdYVbiLVr6iuO2_ODoEgq9e6bBzZe8ttbtKb7wJx-TA6TLgyfeck-e726eb-2j1uHy4uVpFhifQRXmexcAspGBRGi1RcoaySKx1PHNWg0PIpbGFNk7HBS-STCQxxqJwohAi5XNyNv1t2nrbY-jUuu7boUBQnDFgkDI-UjBRpq1DaNGpod5GtzvFQI361OhHjX7UpG-IXEwRXze_P__Bz__AsSkV41JxxTlAqpqh1iczJYBf</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Kang-Jia</creator><creator>Wang, Jian-Fang</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3905-0844</orcidid></search><sort><creationdate>20220801</creationdate><title>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</title><author>Wang, Kang-Jia ; Wang, Jian-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-887201d060de9ca9e931e9b4ddf37fda0fe089cdbacfa2b3b47542e25bf5b5563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conservation laws</topic><topic>Dynamic structural analysis</topic><topic>Fluid dynamics</topic><topic>Inverse method</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear dynamics</topic><topic>Partial differential equations</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kang-Jia</creatorcontrib><creatorcontrib>Wang, Jian-Fang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kang-Jia</au><au>Wang, Jian-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized variational principles of the Benney-Lin equation arising in fluid dynamics</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>139</volume><issue>3</issue><spage>33006</spage><pages>33006-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>Variational principle is important since it can not only reveal the possible solution structures of the equation but also provide the conservation laws in an energy form. Unfortunately, not all the differential equations can find their variational forms. In this work, the Benney-Lin equation is studied and its two different generalized variational principles are successfully established by using the semi-inverse method. The derivation process is given in detail. The finding in this work is expected to give an insight into the study of the nonlinear partial differential equations arising in fluid dynamics.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/ac3cce</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3905-0844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0295-5075
ispartof Europhysics letters, 2022-08, Vol.139 (3), p.33006
issn 0295-5075
1286-4854
language eng
recordid cdi_proquest_journals_3110106136
source IOP Publishing Journals
subjects Conservation laws
Dynamic structural analysis
Fluid dynamics
Inverse method
Nonlinear differential equations
Nonlinear dynamics
Partial differential equations
Variational principles
title Generalized variational principles of the Benney-Lin equation arising in fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20variational%20principles%20of%20the%20Benney-Lin%20equation%20arising%20in%20fluid%20dynamics&rft.jtitle=Europhysics%20letters&rft.au=Wang,%20Kang-Jia&rft.date=2022-08-01&rft.volume=139&rft.issue=3&rft.spage=33006&rft.pages=33006-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/ac3cce&rft_dat=%3Cproquest_iop_j%3E3110106136%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110106136&rft_id=info:pmid/&rfr_iscdi=true