An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells

Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep‐level defects and non‐radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-09, Vol.34 (36), p.n/a
Hauptverfasser: Si, Shenglin, Yin, Tianzhou, Guo, Yixuan, Zhang, Zimin, Wen, Haoxin, Tan, Haiting, Luo, Wenqiang, Zhang, Zhen, Wu, Hualin, Huang, Shaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 34
creator Si, Shenglin
Yin, Tianzhou
Guo, Yixuan
Zhang, Zimin
Wen, Haoxin
Tan, Haiting
Luo, Wenqiang
Zhang, Zhen
Wu, Hualin
Huang, Shaoming
description Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep‐level defects and non‐radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of terthieno[3,2‐b hiophene and 2‐(3‐oxo‐2,3‐dihydro‐1 H‐inden‐1‐ylidene)malononitrile, named 6TIC, as a versatile buffer layer, is adopted to enhance photovoltaic performance and stability simultaneously. It is found that the conjugated molecule filling at grain boundaries and surface can not only chemically anchor with perovskite components to substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively improve the energy level alignment and facilitate charge transfer efficiency at the interface, resulting in an excellent power conversion efficiency of 24.81% with an admirable fill factor of 84.5%. Furthermore, benefiting from the unexceptionable surface protection effect of the hydrophobic buffer layer, greatly improved operational stability is delivered, with retaining 90% of initial efficiency for 960 h aging in a relative humidity of 60 ± 5% air and 1450 h aging under continuous 85 °C heating stress. This strategy may provide a new avenue for advancing high‐efficiency and stable PSCs. Asymmetrical acceptor–donor–acceptor conjugated molecule as a versatile buffer for simultaneously enhancing photovoltaic performance and stability is elaborated. The conductive buffer can not only substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively facilitate charge transfer efficiency at the interface, resulting in an excellent efficiency of 24.81%. What's more, benefiting from the unexceptionable protective effect, greatly improved humidity and thermal stability are delivered.
doi_str_mv 10.1002/adfm.202401951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109912268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109912268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2721-3a381d5beabb7ecdd48beaa06a61b4d40d1bd8fb6960531e3068027ccb9926253</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EEqWwZW2JdYrtJE6yDH0AUiuQWhC7yI9rlJLGxU6LuuMf-EO-hJRCWbKa0WjmXukgdE5JjxLCLoU2ix4jLCI0i-kB6lBOeRASlh7uPX06RifezwmhSRJGHbTOa5wrBcvGus_3j4Gtv_U3whNbgVpVgGeirKwDjR_BedGUbXS1MgYcHtZCVmX9jIfGlKqEusGi1njatDHge3B27V_KBvDUVsLhPlSVP0VHRlQezn60ix5Gw1n_JhjfXd_283GgWMJoEIowpTqWIKRMQGkdpa0XhAtOZaQjoqnUqZE84yQOKYSEp4QlSsksY5zFYRdd7O4unX1dgW-KuV25un1ZhJRkGWWMp22rt2spZ713YIqlKxfCbQpKii3bYsu22LNtB9lu8NZy2PzTLvLBaPK3_QIVpoC7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109912268</pqid></control><display><type>article</type><title>An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Si, Shenglin ; Yin, Tianzhou ; Guo, Yixuan ; Zhang, Zimin ; Wen, Haoxin ; Tan, Haiting ; Luo, Wenqiang ; Zhang, Zhen ; Wu, Hualin ; Huang, Shaoming</creator><creatorcontrib>Si, Shenglin ; Yin, Tianzhou ; Guo, Yixuan ; Zhang, Zimin ; Wen, Haoxin ; Tan, Haiting ; Luo, Wenqiang ; Zhang, Zhen ; Wu, Hualin ; Huang, Shaoming</creatorcontrib><description>Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep‐level defects and non‐radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of terthieno[3,2‐b hiophene and 2‐(3‐oxo‐2,3‐dihydro‐1 H‐inden‐1‐ylidene)malononitrile, named 6TIC, as a versatile buffer layer, is adopted to enhance photovoltaic performance and stability simultaneously. It is found that the conjugated molecule filling at grain boundaries and surface can not only chemically anchor with perovskite components to substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively improve the energy level alignment and facilitate charge transfer efficiency at the interface, resulting in an excellent power conversion efficiency of 24.81% with an admirable fill factor of 84.5%. Furthermore, benefiting from the unexceptionable surface protection effect of the hydrophobic buffer layer, greatly improved operational stability is delivered, with retaining 90% of initial efficiency for 960 h aging in a relative humidity of 60 ± 5% air and 1450 h aging under continuous 85 °C heating stress. This strategy may provide a new avenue for advancing high‐efficiency and stable PSCs. Asymmetrical acceptor–donor–acceptor conjugated molecule as a versatile buffer for simultaneously enhancing photovoltaic performance and stability is elaborated. The conductive buffer can not only substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively facilitate charge transfer efficiency at the interface, resulting in an excellent efficiency of 24.81%. What's more, benefiting from the unexceptionable protective effect, greatly improved humidity and thermal stability are delivered.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401951</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Buffer layers ; Charge efficiency ; Charge transfer ; Crystal defects ; defect passivation ; Efficiency ; Energy conversion efficiency ; Energy levels ; Grain boundaries ; interfacial engineering ; Malononitrile ; non‐radiative recombination ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Radiative recombination ; Relative humidity ; Solar cells ; stability ; Surface stability</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (36), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2721-3a381d5beabb7ecdd48beaa06a61b4d40d1bd8fb6960531e3068027ccb9926253</cites><orcidid>0000-0003-0242-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401951$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401951$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Si, Shenglin</creatorcontrib><creatorcontrib>Yin, Tianzhou</creatorcontrib><creatorcontrib>Guo, Yixuan</creatorcontrib><creatorcontrib>Zhang, Zimin</creatorcontrib><creatorcontrib>Wen, Haoxin</creatorcontrib><creatorcontrib>Tan, Haiting</creatorcontrib><creatorcontrib>Luo, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Wu, Hualin</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep‐level defects and non‐radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of terthieno[3,2‐b hiophene and 2‐(3‐oxo‐2,3‐dihydro‐1 H‐inden‐1‐ylidene)malononitrile, named 6TIC, as a versatile buffer layer, is adopted to enhance photovoltaic performance and stability simultaneously. It is found that the conjugated molecule filling at grain boundaries and surface can not only chemically anchor with perovskite components to substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively improve the energy level alignment and facilitate charge transfer efficiency at the interface, resulting in an excellent power conversion efficiency of 24.81% with an admirable fill factor of 84.5%. Furthermore, benefiting from the unexceptionable surface protection effect of the hydrophobic buffer layer, greatly improved operational stability is delivered, with retaining 90% of initial efficiency for 960 h aging in a relative humidity of 60 ± 5% air and 1450 h aging under continuous 85 °C heating stress. This strategy may provide a new avenue for advancing high‐efficiency and stable PSCs. Asymmetrical acceptor–donor–acceptor conjugated molecule as a versatile buffer for simultaneously enhancing photovoltaic performance and stability is elaborated. The conductive buffer can not only substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively facilitate charge transfer efficiency at the interface, resulting in an excellent efficiency of 24.81%. What's more, benefiting from the unexceptionable protective effect, greatly improved humidity and thermal stability are delivered.</description><subject>Buffer layers</subject><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Crystal defects</subject><subject>defect passivation</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Grain boundaries</subject><subject>interfacial engineering</subject><subject>Malononitrile</subject><subject>non‐radiative recombination</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>stability</subject><subject>Surface stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURC0EEqWwZW2JdYrtJE6yDH0AUiuQWhC7yI9rlJLGxU6LuuMf-EO-hJRCWbKa0WjmXukgdE5JjxLCLoU2ix4jLCI0i-kB6lBOeRASlh7uPX06RifezwmhSRJGHbTOa5wrBcvGus_3j4Gtv_U3whNbgVpVgGeirKwDjR_BedGUbXS1MgYcHtZCVmX9jIfGlKqEusGi1njatDHge3B27V_KBvDUVsLhPlSVP0VHRlQezn60ix5Gw1n_JhjfXd_283GgWMJoEIowpTqWIKRMQGkdpa0XhAtOZaQjoqnUqZE84yQOKYSEp4QlSsksY5zFYRdd7O4unX1dgW-KuV25un1ZhJRkGWWMp22rt2spZ713YIqlKxfCbQpKii3bYsu22LNtB9lu8NZy2PzTLvLBaPK3_QIVpoC7</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Si, Shenglin</creator><creator>Yin, Tianzhou</creator><creator>Guo, Yixuan</creator><creator>Zhang, Zimin</creator><creator>Wen, Haoxin</creator><creator>Tan, Haiting</creator><creator>Luo, Wenqiang</creator><creator>Zhang, Zhen</creator><creator>Wu, Hualin</creator><creator>Huang, Shaoming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid></search><sort><creationdate>20240901</creationdate><title>An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells</title><author>Si, Shenglin ; Yin, Tianzhou ; Guo, Yixuan ; Zhang, Zimin ; Wen, Haoxin ; Tan, Haiting ; Luo, Wenqiang ; Zhang, Zhen ; Wu, Hualin ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2721-3a381d5beabb7ecdd48beaa06a61b4d40d1bd8fb6960531e3068027ccb9926253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buffer layers</topic><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Crystal defects</topic><topic>defect passivation</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Grain boundaries</topic><topic>interfacial engineering</topic><topic>Malononitrile</topic><topic>non‐radiative recombination</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>stability</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Si, Shenglin</creatorcontrib><creatorcontrib>Yin, Tianzhou</creatorcontrib><creatorcontrib>Guo, Yixuan</creatorcontrib><creatorcontrib>Zhang, Zimin</creatorcontrib><creatorcontrib>Wen, Haoxin</creatorcontrib><creatorcontrib>Tan, Haiting</creatorcontrib><creatorcontrib>Luo, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Wu, Hualin</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Si, Shenglin</au><au>Yin, Tianzhou</au><au>Guo, Yixuan</au><au>Zhang, Zimin</au><au>Wen, Haoxin</au><au>Tan, Haiting</au><au>Luo, Wenqiang</au><au>Zhang, Zhen</au><au>Wu, Hualin</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep‐level defects and non‐radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of terthieno[3,2‐b hiophene and 2‐(3‐oxo‐2,3‐dihydro‐1 H‐inden‐1‐ylidene)malononitrile, named 6TIC, as a versatile buffer layer, is adopted to enhance photovoltaic performance and stability simultaneously. It is found that the conjugated molecule filling at grain boundaries and surface can not only chemically anchor with perovskite components to substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively improve the energy level alignment and facilitate charge transfer efficiency at the interface, resulting in an excellent power conversion efficiency of 24.81% with an admirable fill factor of 84.5%. Furthermore, benefiting from the unexceptionable surface protection effect of the hydrophobic buffer layer, greatly improved operational stability is delivered, with retaining 90% of initial efficiency for 960 h aging in a relative humidity of 60 ± 5% air and 1450 h aging under continuous 85 °C heating stress. This strategy may provide a new avenue for advancing high‐efficiency and stable PSCs. Asymmetrical acceptor–donor–acceptor conjugated molecule as a versatile buffer for simultaneously enhancing photovoltaic performance and stability is elaborated. The conductive buffer can not only substantially eliminate interfacial defects and suppress detestable non‐radiative recombination, but also effectively facilitate charge transfer efficiency at the interface, resulting in an excellent efficiency of 24.81%. What's more, benefiting from the unexceptionable protective effect, greatly improved humidity and thermal stability are delivered.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401951</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3109912268
source Wiley Online Library Journals Frontfile Complete
subjects Buffer layers
Charge efficiency
Charge transfer
Crystal defects
defect passivation
Efficiency
Energy conversion efficiency
Energy levels
Grain boundaries
interfacial engineering
Malononitrile
non‐radiative recombination
perovskite solar cells
Perovskites
Photovoltaic cells
Radiative recombination
Relative humidity
Solar cells
stability
Surface stability
title An Acceptor–Donor–Acceptor Molecule Tailored Versatile Buffer Enabling Efficient and Stable Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Acceptor%E2%80%93Donor%E2%80%93Acceptor%20Molecule%20Tailored%20Versatile%20Buffer%20Enabling%20Efficient%20and%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Si,%20Shenglin&rft.date=2024-09-01&rft.volume=34&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401951&rft_dat=%3Cproquest_cross%3E3109912268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109912268&rft_id=info:pmid/&rfr_iscdi=true