CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison
The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first ex...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2024-09, Vol.51 (18), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 51 |
creator | Kawaguchi, Koh Shakespeare, Callum J. Roderick, Michael L. |
description | The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR |
doi_str_mv | 10.1029/2024GL110384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3109753618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109753618</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1948-9ffb764f49b6a207ea617c1cff3364025b73201414590e5b983a3016df1a5a73</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4wCWWBfGP7FjdlVaAlJQEXQfOY1dpbh2SFKisuIInJGTEFQWrGYW35s37yF0SeCaAFU3FChPM0KAxfwIjYjifBIDyGM0AlDDTqU4RWdtuwEABoyMkEsWFM9MbXxp_MrgyuPUhUI7PG-7aqu7KngcLJ469_359fK6x7PQ-944V_k1zoJf9_rd3OIn3eit6UxTfRw02pf4MZTG4SRsa91UbfDn6MRq15qLvzlGy7v5MrmfZIv0IZlmk3p4OZ4oawspuOWqEJqCNFoQuSIraxkTHGhUSEaBcMIjBSYqVMw0AyJKS3SkJRujq8PZuglvO9N2-SbsGj845oyAkhETJB4oeqD6ypl9XjdD2mafE8h_u8z_d5mnz5mICY3ZDzZnaGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109753618</pqid></control><display><type>article</type><title>CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kawaguchi, Koh ; Shakespeare, Callum J. ; Roderick, Michael L.</creator><creatorcontrib>Kawaguchi, Koh ; Shakespeare, Callum J. ; Roderick, Michael L.</creatorcontrib><description>The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2024GL110384</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Carbon dioxide ; Climatic conditions ; cloud ; Cloud properties ; Clouds ; Downwelling ; downwelling longwave radiation ; Earth surface ; Emissivity ; Energy balance ; Energy budget ; Estimation ; Future climates ; Inversions ; Long wave radiation ; Parameterization ; Radiation ; Radiative forcing ; Shakespeare, William (1564-1616) ; Sky models ; Surface energy ; Surface properties ; Temperature inversion ; Temperature inversions</subject><ispartof>Geophysical research letters, 2024-09, Vol.51 (18), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9438-3895 ; 0000-0002-8109-0751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024GL110384$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024GL110384$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11495,11543,27903,27904,45552,45553,46029,46445,46453,46869</link.rule.ids></links><search><creatorcontrib>Kawaguchi, Koh</creatorcontrib><creatorcontrib>Shakespeare, Callum J.</creatorcontrib><creatorcontrib>Roderick, Michael L.</creatorcontrib><title>CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison</title><title>Geophysical research letters</title><description>The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR</description><subject>Carbon dioxide</subject><subject>Climatic conditions</subject><subject>cloud</subject><subject>Cloud properties</subject><subject>Clouds</subject><subject>Downwelling</subject><subject>downwelling longwave radiation</subject><subject>Earth surface</subject><subject>Emissivity</subject><subject>Energy balance</subject><subject>Energy budget</subject><subject>Estimation</subject><subject>Future climates</subject><subject>Inversions</subject><subject>Long wave radiation</subject><subject>Parameterization</subject><subject>Radiation</subject><subject>Radiative forcing</subject><subject>Shakespeare, William (1564-1616)</subject><subject>Sky models</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Temperature inversion</subject><subject>Temperature inversions</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNkE1OwzAQhS0EEqWw4wCWWBfGP7FjdlVaAlJQEXQfOY1dpbh2SFKisuIInJGTEFQWrGYW35s37yF0SeCaAFU3FChPM0KAxfwIjYjifBIDyGM0AlDDTqU4RWdtuwEABoyMkEsWFM9MbXxp_MrgyuPUhUI7PG-7aqu7KngcLJ469_359fK6x7PQ-944V_k1zoJf9_rd3OIn3eit6UxTfRw02pf4MZTG4SRsa91UbfDn6MRq15qLvzlGy7v5MrmfZIv0IZlmk3p4OZ4oawspuOWqEJqCNFoQuSIraxkTHGhUSEaBcMIjBSYqVMw0AyJKS3SkJRujq8PZuglvO9N2-SbsGj845oyAkhETJB4oeqD6ypl9XjdD2mafE8h_u8z_d5mnz5mICY3ZDzZnaGs</recordid><startdate>20240928</startdate><enddate>20240928</enddate><creator>Kawaguchi, Koh</creator><creator>Shakespeare, Callum J.</creator><creator>Roderick, Michael L.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9438-3895</orcidid><orcidid>https://orcid.org/0000-0002-8109-0751</orcidid></search><sort><creationdate>20240928</creationdate><title>CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison</title><author>Kawaguchi, Koh ; Shakespeare, Callum J. ; Roderick, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1948-9ffb764f49b6a207ea617c1cff3364025b73201414590e5b983a3016df1a5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Climatic conditions</topic><topic>cloud</topic><topic>Cloud properties</topic><topic>Clouds</topic><topic>Downwelling</topic><topic>downwelling longwave radiation</topic><topic>Earth surface</topic><topic>Emissivity</topic><topic>Energy balance</topic><topic>Energy budget</topic><topic>Estimation</topic><topic>Future climates</topic><topic>Inversions</topic><topic>Long wave radiation</topic><topic>Parameterization</topic><topic>Radiation</topic><topic>Radiative forcing</topic><topic>Shakespeare, William (1564-1616)</topic><topic>Sky models</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Temperature inversion</topic><topic>Temperature inversions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawaguchi, Koh</creatorcontrib><creatorcontrib>Shakespeare, Callum J.</creatorcontrib><creatorcontrib>Roderick, Michael L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawaguchi, Koh</au><au>Shakespeare, Callum J.</au><au>Roderick, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison</atitle><jtitle>Geophysical research letters</jtitle><date>2024-09-28</date><risdate>2024</risdate><volume>51</volume><issue>18</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The downwelling longwave radiation at the surface (DLR) is a key component of the Earth's surface energy budget. We present a novel set of equations that explicitly account for both clouds and the CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ effect to calculate the all‐sky DLR. This paper first extends the clear‐sky DLR model of Shakespeare and Roderick (2021, https://doi.org/10.1002/qj.4176) to include temperature inversions and clouds. We parameterize relevant cloud properties through theoretical and empirical considerations to formulate an all‐sky model. Our model is more accurate than existing methods (reduces Root Mean Squared Error by 2.1–8.7 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ and 1.2–10.1 W/m2 $\mathrm{W}/{\mathrm{m}}^{\mathrm{2}}$ compared to ERA5 reanalysis and in‐situ data respectively), and provides a strong physical basis for the estimation of the downwelling longwave from near‐surface information. We highlight the important role of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ dependence by showing our model largely captures the change in atmospheric emissivity purely due to CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ (i.e., the instantaneous radiative forcing) in CMIP6 models.
Plain Language Summary
The downwelling longwave radiation (DLR) at the surface is a key component of the energy balance at the Earth's surface. Understanding how the DLR will change under future climate conditions is vital. For the first time, we explicitly write a set of equations to calculate the DLR that sufficiently account for the impact of CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ and clouds simultaneously. Our model is more accurate than existing methods, and provides a much stronger physical basis for the estimation of the downwelling longwave from near‐surface information. In this paper, we extend an existing method for estimating the DLR under clear‐sky conditions (i.e., no clouds) to operate under all sky conditions. This method can be used to inform models where the DLR is needed, but only basic observations are available.
Key Points
Downwelling longwave radiation (DLR) is a poorly estimated element of the surface energy budget by existing analytical models
Explicitly accounting for temperature inversions and cloud emissivities improves the accuracy of DLR estimation
Considering the radiative forcing from increasing CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ is necessary to produce unbiased future estimates of DLR</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2024GL110384</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9438-3895</orcidid><orcidid>https://orcid.org/0000-0002-8109-0751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2024-09, Vol.51 (18), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_3109753618 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide Climatic conditions cloud Cloud properties Clouds Downwelling downwelling longwave radiation Earth surface Emissivity Energy balance Energy budget Estimation Future climates Inversions Long wave radiation Parameterization Radiation Radiative forcing Shakespeare, William (1564-1616) Sky models Surface energy Surface properties Temperature inversion Temperature inversions |
title | CO2 Dependence in Global Estimation of All‐Sky Downwelling Longwave: Parameterization and Model Comparison |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Dependence%20in%20Global%20Estimation%20of%20All%E2%80%90Sky%20Downwelling%20Longwave:%20Parameterization%20and%20Model%20Comparison&rft.jtitle=Geophysical%20research%20letters&rft.au=Kawaguchi,%20Koh&rft.date=2024-09-28&rft.volume=51&rft.issue=18&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2024GL110384&rft_dat=%3Cproquest_wiley%3E3109753618%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109753618&rft_id=info:pmid/&rfr_iscdi=true |