Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation

Nano‐ and angstrom‐scale channels fabricated from 2D‐layered materials provide a unique platform for studying fluidic behavior at atomic‐scale confinement, with applications in desalination, osmotic power generation, and fuel cells. While various fabrication methods exist, achieving precision, scala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-09, Vol.34 (39), p.n/a
Hauptverfasser: Bhardwaj, Ankit, Gogoi, Raj Kumar, Howard, William Joshua, Tillotson, Evan, Goutham, Solleti, You, Yi, Hashimoto, Teruo, Janzen, Eli, Edgar, James H., Haigh, Sarah J., Keerthi, Ashok, Radha, Boya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced functional materials
container_volume 34
creator Bhardwaj, Ankit
Gogoi, Raj Kumar
Howard, William Joshua
Tillotson, Evan
Goutham, Solleti
You, Yi
Hashimoto, Teruo
Janzen, Eli
Edgar, James H.
Haigh, Sarah J.
Keerthi, Ashok
Radha, Boya
description Nano‐ and angstrom‐scale channels fabricated from 2D‐layered materials provide a unique platform for studying fluidic behavior at atomic‐scale confinement, with applications in desalination, osmotic power generation, and fuel cells. While various fabrication methods exist, achieving precision, scalability, and minimal fabrication time is challenging. Ultramicrotomy‐based nanofabrication is shown here as an efficient approach to create nanofluidic membranes  containing nanochannels with atomically flat walls. This approach is compatible with both bottom–up nanolaminates and top–down nanochannels,  produces multiple devices from the same 2D assembly and allows swift variation of channel length.  Integration of these membranes into macroscopic silicon fluidic‐chips is achieved maintaining the structural and functional properties. The robustness of the sliced membranes is demonstrated through restacked vermiculate laminates that sustain applied pressures and generate ionic streaming currents. Sliced pristine vermiculite channels exhibit charge‐selective ion transport, leading to osmotic power density (Posm/A) ranging from 9.2 to 300.4 Wm−2 under various KCl concentration gradients. Maximum conversion efficiency of 23.3% is obtained at a 100‐fold gradient, yielding Posm/A of 234.6 Wm−2. Short channel lengths sliced by ultramicrotomy contribute to high Posm/A, promising applications of miniature energy devices for pressure‐driven electricity generation and osmotic power generation. Ultramicrotomy enables precise nanochannels wit 2D materials for nanofluidic devices. Integrated with microfluidic chips, these membranes allow ion transport studies under confinement. Sliced membranes of vermiculite laminate channels show promise for pressure‐driven energy due to their pressure tolerance and ionic current generation. Pristine channels achieve exceptional efficiency in osmotic power generation, exceeding state‐of‐the‐art systems.
doi_str_mv 10.1002/adfm.202401988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3109648608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109648608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-412fc36b8efddbb3ac879440252dd8e0115b637fb5fc4052bd087b6eb281c2c13</originalsourceid><addsrcrecordid>eNqFkLtOAzEURC0EEiHQUlui3mB7X94yCkmIFKBJJDrLz-Bo1w72IrQdn8A38iVsCAol1UxxZq7uAHCN0QgjRG65Ms2IIJIhXFF6Aga4wEWSIkJPjx4_n4OLGLcI4bJMswHYrOs28MbK4FvfdF8fn-MYbWy1gjMugpW8td5Bb-Ajd16-cOd0HaHxAU6NsdJq18JFT6wCd3HnQwu5U3DqdNh0cK57_Wm4BGeG11Ff_eoQrGfT1eQ-WT7NF5PxMpGkJDTJMDEyLQTVRikhUi5pWWUZIjlRimqEcS6KtDQiNzJDOREK0VIUWhCKJZE4HYKbQ-8u-Nc3HVu29W_B9SdZilFVZLRAtKdGB6p_O8agDdsF2_DQMYzYfky2H5Mdx-wD1SHwbmvd_UOz8d3s4S_7DVO1e0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109648608</pqid></control><display><type>article</type><title>Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation</title><source>Wiley Journals</source><creator>Bhardwaj, Ankit ; Gogoi, Raj Kumar ; Howard, William Joshua ; Tillotson, Evan ; Goutham, Solleti ; You, Yi ; Hashimoto, Teruo ; Janzen, Eli ; Edgar, James H. ; Haigh, Sarah J. ; Keerthi, Ashok ; Radha, Boya</creator><creatorcontrib>Bhardwaj, Ankit ; Gogoi, Raj Kumar ; Howard, William Joshua ; Tillotson, Evan ; Goutham, Solleti ; You, Yi ; Hashimoto, Teruo ; Janzen, Eli ; Edgar, James H. ; Haigh, Sarah J. ; Keerthi, Ashok ; Radha, Boya</creatorcontrib><description>Nano‐ and angstrom‐scale channels fabricated from 2D‐layered materials provide a unique platform for studying fluidic behavior at atomic‐scale confinement, with applications in desalination, osmotic power generation, and fuel cells. While various fabrication methods exist, achieving precision, scalability, and minimal fabrication time is challenging. Ultramicrotomy‐based nanofabrication is shown here as an efficient approach to create nanofluidic membranes  containing nanochannels with atomically flat walls. This approach is compatible with both bottom–up nanolaminates and top–down nanochannels,  produces multiple devices from the same 2D assembly and allows swift variation of channel length.  Integration of these membranes into macroscopic silicon fluidic‐chips is achieved maintaining the structural and functional properties. The robustness of the sliced membranes is demonstrated through restacked vermiculate laminates that sustain applied pressures and generate ionic streaming currents. Sliced pristine vermiculite channels exhibit charge‐selective ion transport, leading to osmotic power density (Posm/A) ranging from 9.2 to 300.4 Wm−2 under various KCl concentration gradients. Maximum conversion efficiency of 23.3% is obtained at a 100‐fold gradient, yielding Posm/A of 234.6 Wm−2. Short channel lengths sliced by ultramicrotomy contribute to high Posm/A, promising applications of miniature energy devices for pressure‐driven electricity generation and osmotic power generation. Ultramicrotomy enables precise nanochannels wit 2D materials for nanofluidic devices. Integrated with microfluidic chips, these membranes allow ion transport studies under confinement. Sliced membranes of vermiculite laminate channels show promise for pressure‐driven energy due to their pressure tolerance and ionic current generation. Pristine channels achieve exceptional efficiency in osmotic power generation, exceeding state‐of‐the‐art systems.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401988</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Charge density ; Concentration gradient ; Fluidics ; Flux density ; Fuel cells ; Ion transport ; Laminates ; Layered materials ; Membranes ; Nanochannels ; Nanofabrication ; Nanofluids ; Ultramicrotomy ; Vermiculite</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (39), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-412fc36b8efddbb3ac879440252dd8e0115b637fb5fc4052bd087b6eb281c2c13</cites><orcidid>0000-0003-1345-7029 ; 0000-0002-8479-4762 ; 0000-0002-8651-1666 ; 0000-0002-1579-6916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401988$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401988$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bhardwaj, Ankit</creatorcontrib><creatorcontrib>Gogoi, Raj Kumar</creatorcontrib><creatorcontrib>Howard, William Joshua</creatorcontrib><creatorcontrib>Tillotson, Evan</creatorcontrib><creatorcontrib>Goutham, Solleti</creatorcontrib><creatorcontrib>You, Yi</creatorcontrib><creatorcontrib>Hashimoto, Teruo</creatorcontrib><creatorcontrib>Janzen, Eli</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Keerthi, Ashok</creatorcontrib><creatorcontrib>Radha, Boya</creatorcontrib><title>Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation</title><title>Advanced functional materials</title><description>Nano‐ and angstrom‐scale channels fabricated from 2D‐layered materials provide a unique platform for studying fluidic behavior at atomic‐scale confinement, with applications in desalination, osmotic power generation, and fuel cells. While various fabrication methods exist, achieving precision, scalability, and minimal fabrication time is challenging. Ultramicrotomy‐based nanofabrication is shown here as an efficient approach to create nanofluidic membranes  containing nanochannels with atomically flat walls. This approach is compatible with both bottom–up nanolaminates and top–down nanochannels,  produces multiple devices from the same 2D assembly and allows swift variation of channel length.  Integration of these membranes into macroscopic silicon fluidic‐chips is achieved maintaining the structural and functional properties. The robustness of the sliced membranes is demonstrated through restacked vermiculate laminates that sustain applied pressures and generate ionic streaming currents. Sliced pristine vermiculite channels exhibit charge‐selective ion transport, leading to osmotic power density (Posm/A) ranging from 9.2 to 300.4 Wm−2 under various KCl concentration gradients. Maximum conversion efficiency of 23.3% is obtained at a 100‐fold gradient, yielding Posm/A of 234.6 Wm−2. Short channel lengths sliced by ultramicrotomy contribute to high Posm/A, promising applications of miniature energy devices for pressure‐driven electricity generation and osmotic power generation. Ultramicrotomy enables precise nanochannels wit 2D materials for nanofluidic devices. Integrated with microfluidic chips, these membranes allow ion transport studies under confinement. Sliced membranes of vermiculite laminate channels show promise for pressure‐driven energy due to their pressure tolerance and ionic current generation. Pristine channels achieve exceptional efficiency in osmotic power generation, exceeding state‐of‐the‐art systems.</description><subject>2D materials</subject><subject>Charge density</subject><subject>Concentration gradient</subject><subject>Fluidics</subject><subject>Flux density</subject><subject>Fuel cells</subject><subject>Ion transport</subject><subject>Laminates</subject><subject>Layered materials</subject><subject>Membranes</subject><subject>Nanochannels</subject><subject>Nanofabrication</subject><subject>Nanofluids</subject><subject>Ultramicrotomy</subject><subject>Vermiculite</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLtOAzEURC0EEiHQUlui3mB7X94yCkmIFKBJJDrLz-Bo1w72IrQdn8A38iVsCAol1UxxZq7uAHCN0QgjRG65Ms2IIJIhXFF6Aga4wEWSIkJPjx4_n4OLGLcI4bJMswHYrOs28MbK4FvfdF8fn-MYbWy1gjMugpW8td5Bb-Ajd16-cOd0HaHxAU6NsdJq18JFT6wCd3HnQwu5U3DqdNh0cK57_Wm4BGeG11Ff_eoQrGfT1eQ-WT7NF5PxMpGkJDTJMDEyLQTVRikhUi5pWWUZIjlRimqEcS6KtDQiNzJDOREK0VIUWhCKJZE4HYKbQ-8u-Nc3HVu29W_B9SdZilFVZLRAtKdGB6p_O8agDdsF2_DQMYzYfky2H5Mdx-wD1SHwbmvd_UOz8d3s4S_7DVO1e0M</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Bhardwaj, Ankit</creator><creator>Gogoi, Raj Kumar</creator><creator>Howard, William Joshua</creator><creator>Tillotson, Evan</creator><creator>Goutham, Solleti</creator><creator>You, Yi</creator><creator>Hashimoto, Teruo</creator><creator>Janzen, Eli</creator><creator>Edgar, James H.</creator><creator>Haigh, Sarah J.</creator><creator>Keerthi, Ashok</creator><creator>Radha, Boya</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1345-7029</orcidid><orcidid>https://orcid.org/0000-0002-8479-4762</orcidid><orcidid>https://orcid.org/0000-0002-8651-1666</orcidid><orcidid>https://orcid.org/0000-0002-1579-6916</orcidid></search><sort><creationdate>20240901</creationdate><title>Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation</title><author>Bhardwaj, Ankit ; Gogoi, Raj Kumar ; Howard, William Joshua ; Tillotson, Evan ; Goutham, Solleti ; You, Yi ; Hashimoto, Teruo ; Janzen, Eli ; Edgar, James H. ; Haigh, Sarah J. ; Keerthi, Ashok ; Radha, Boya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-412fc36b8efddbb3ac879440252dd8e0115b637fb5fc4052bd087b6eb281c2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Charge density</topic><topic>Concentration gradient</topic><topic>Fluidics</topic><topic>Flux density</topic><topic>Fuel cells</topic><topic>Ion transport</topic><topic>Laminates</topic><topic>Layered materials</topic><topic>Membranes</topic><topic>Nanochannels</topic><topic>Nanofabrication</topic><topic>Nanofluids</topic><topic>Ultramicrotomy</topic><topic>Vermiculite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Ankit</creatorcontrib><creatorcontrib>Gogoi, Raj Kumar</creatorcontrib><creatorcontrib>Howard, William Joshua</creatorcontrib><creatorcontrib>Tillotson, Evan</creatorcontrib><creatorcontrib>Goutham, Solleti</creatorcontrib><creatorcontrib>You, Yi</creatorcontrib><creatorcontrib>Hashimoto, Teruo</creatorcontrib><creatorcontrib>Janzen, Eli</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Haigh, Sarah J.</creatorcontrib><creatorcontrib>Keerthi, Ashok</creatorcontrib><creatorcontrib>Radha, Boya</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhardwaj, Ankit</au><au>Gogoi, Raj Kumar</au><au>Howard, William Joshua</au><au>Tillotson, Evan</au><au>Goutham, Solleti</au><au>You, Yi</au><au>Hashimoto, Teruo</au><au>Janzen, Eli</au><au>Edgar, James H.</au><au>Haigh, Sarah J.</au><au>Keerthi, Ashok</au><au>Radha, Boya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nano‐ and angstrom‐scale channels fabricated from 2D‐layered materials provide a unique platform for studying fluidic behavior at atomic‐scale confinement, with applications in desalination, osmotic power generation, and fuel cells. While various fabrication methods exist, achieving precision, scalability, and minimal fabrication time is challenging. Ultramicrotomy‐based nanofabrication is shown here as an efficient approach to create nanofluidic membranes  containing nanochannels with atomically flat walls. This approach is compatible with both bottom–up nanolaminates and top–down nanochannels,  produces multiple devices from the same 2D assembly and allows swift variation of channel length.  Integration of these membranes into macroscopic silicon fluidic‐chips is achieved maintaining the structural and functional properties. The robustness of the sliced membranes is demonstrated through restacked vermiculate laminates that sustain applied pressures and generate ionic streaming currents. Sliced pristine vermiculite channels exhibit charge‐selective ion transport, leading to osmotic power density (Posm/A) ranging from 9.2 to 300.4 Wm−2 under various KCl concentration gradients. Maximum conversion efficiency of 23.3% is obtained at a 100‐fold gradient, yielding Posm/A of 234.6 Wm−2. Short channel lengths sliced by ultramicrotomy contribute to high Posm/A, promising applications of miniature energy devices for pressure‐driven electricity generation and osmotic power generation. Ultramicrotomy enables precise nanochannels wit 2D materials for nanofluidic devices. Integrated with microfluidic chips, these membranes allow ion transport studies under confinement. Sliced membranes of vermiculite laminate channels show promise for pressure‐driven energy due to their pressure tolerance and ionic current generation. Pristine channels achieve exceptional efficiency in osmotic power generation, exceeding state‐of‐the‐art systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401988</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1345-7029</orcidid><orcidid>https://orcid.org/0000-0002-8479-4762</orcidid><orcidid>https://orcid.org/0000-0002-8651-1666</orcidid><orcidid>https://orcid.org/0000-0002-1579-6916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (39), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3109648608
source Wiley Journals
subjects 2D materials
Charge density
Concentration gradient
Fluidics
Flux density
Fuel cells
Ion transport
Laminates
Layered materials
Membranes
Nanochannels
Nanofabrication
Nanofluids
Ultramicrotomy
Vermiculite
title Ultramicrotomy‐Assisted Fabrication of Nanochannels for Efficient Ion Transport and Energy Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultramicrotomy%E2%80%90Assisted%20Fabrication%20of%20Nanochannels%20for%20Efficient%20Ion%20Transport%20and%20Energy%20Generation&rft.jtitle=Advanced%20functional%20materials&rft.au=Bhardwaj,%20Ankit&rft.date=2024-09-01&rft.volume=34&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401988&rft_dat=%3Cproquest_cross%3E3109648608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109648608&rft_id=info:pmid/&rfr_iscdi=true